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Abstract

A theory is proposed for the Turbulent Natural Convection Boundary Layer next
to heated vertical surfaces, based on a similarity analysis of two separate reduced
sets of Reynolds-averaged single-point equations describing the inner and outer parts
of the flowfield. Scaling functions for mean and fluctuating quantities are found
from the boundary conditions at the wall and from the matching of profiles using
an Asymptotic Invariance Principle. The analysis presented here suggests that the
local scaling functions are valid both in the limit of infinite Grashof number (Nusselt
number) and for any position downstream well into the turbulent regime.

It is found that the boundary layer does not grow linearly for the range of Grashof
numbers experiments were performed at. However, it slowly loses its streamwise
inhomogeneity until asymptotically dé/dz = const. In this limit, the proposed heat
transfer relation reduces to the widely accepted form Nus o H§1/4 (ie. as e =
Nus™' — 0 and H} = Grs - Nus - Pr?* — oo). With the new theory it is possible to
explain the failure of the earlier analysis of George and Capp [26] at finite Grashof
number, and why experimental data plots collapse or why they do not. It is also
possible to explain the “apparent collapse” of data, observed by some investigators
when the variation of the improperly chosen scaling function was small and the range
of the experiment limited. The theory is seen to be at least consistent with the data
sets investigated.
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Chapter 1

Introduction

1.1 Motivation

One of the principal research areas today within the field of Fluid Dynamics and
Heat Transfer is concerned with the understanding of the fundamental structures of
turbulent heat transfer phenomena, one of the classical problems being the Turbulent
Natural Convection Boundary Layer (TNCBL) next to heated vertical surfaces. Al-
though there have been numerous investigations, its characteristics have been clarified
only to a moderate degree to present.

Theoretical framework on this subject had first been established in the 1950s by
Eckert and Jackson [17] and Bayley [5]. Both used a profile method to determine the
heat transfer law, a velocity scale and the boundary layer thickness (an outer length
scale), their analyses were made to fit a limited range of experimental data.

While scaling laws have been chosen by experimenters to obtain good correlation of
their data, most are arbitrary “characteristic quantities” and lack convincing physical
arguments aside from elementary dimensional analysis. Not surprisingly, a great
variety of scaling laws can be found in the literature and the existence of universal
profiles has yet to be established experimentally.

The most successful attempt to date to derive scaling laws, profiles and heat



transfer relations (at least in describing the asymptotic behaviour) from a “local sim-
ilarity” analysis of the governing equations was made by George and Capp [26] in 1979
(GCT79). Unfortunately in most recent experiments and numerical calculations, re-
searchers encountered difficulty using the GC79 theory to collapse data which continue
to show a residual dependence on Grashof number based on downstream distance,
Gy, over the range of their experiments. Therefore, divergent beliefs on scaling rela-
tions, wall functions and laws describing specific parts of the boundary layer continue
to persist in the vast body of literature (e.g. Miyamoto et al. 1982 [43], Siebers et
al. 1985 [58], Tsuji and Nagano 1988 [64] and 1989 [65], Tsuji et al. 1990 [66] and
1992 [67]).

This work presents a theoretical approach based on a strict similarity analysis ap-
plied separately to a reduced inner and outer set of the coupled single point boundary
layer equations. The scaling laws derived retain a Grashof number dependence for
finite Grashof numbers, Gr,, but the George/Capp scaling will be recovered as the
asymptotic limit for infinite Grashof number, Gr, — oco. We will examine the con-
sequences of the new formulations on correlating data in the TNCBL at moderate
Grashof numbers Gr,., on power-law behaviour in the buoyant sublayer as well as on
the heat transfer relationship. Useful fragments of previous works are expanded and

united into a single theory.

1.2 The Subject to Be Studied

We confine our attention to the natural convection boundary layer next to heated,
semi-infinite vertical surfaces. The flow to be analyzed is shown in figure 1. We choose
the positive z-direction to be opposite to the vector of gravitational acceleration and
the y-direction to be our cross-stream coordinate perpendicular to the surface. The z-
direction, by right-hand rule, is pointing into the drawing surface. The fluid bounded

by the wall is assumed to be of infinite extent and reference quantities are taken at



infinite distance from the wall. The surface is assumed to be free of any obstacles
which might interfere with the flow. For a given heat flux across the surface, unsteady
and initially traveling wave-like motions appear at some distance downstream. These
hydrodynamic instabilities arise when a balance of buoyancy, pressure, and viscous
forces contribute net energy to a disturbance (c.f. Gebhardt 1973 [22]). This causes
the disturbance to grow as it is convected downstream until a breakdown of the
regular wave pattern into an intense mixing region with completely irregular motion
occurs completing the transition to a fully developed turbulent flow. Thus turbulence
develops over a given range of x under given conditions. It is the fully developed
turbulent natural convection boundary layer which is the subject to be studied in
this work.

Note that most natural convection flows found in nature occur on such large length
and time scales that their flow mechanisms are predominantly turbulent. However,
for the scales and details of the flows important in engineering and our environment,
we typically find either laminar flow (becoming unstable due to ever-present distur-
bances), flow in transition or turbulent flow, or sometimes several of these conditions
together in a single flowfield. Examples for engineering applications are the cooling
of rotating turbine blades, where buoyancy forces are very large because of inevitably
large centrifugal accelerations, cooling towers of power plants, airflows adjacent to
burning walls, etc. Also note that in gases of low density and in liquids of high

Prandtl number, the length scale for transition becomes very large.

1.3 Thesis Outline

The following is a short outline of the remainder of this thesis: Chapter 2 summarizes
the history of theoretical and numerical work on the subject and reviews some of the
more important analyses. Local and average heat transfer relations as well as scaling

parameters are compared.



The new theory proposing two separate similarity solutions to the momentum and
energy equations is outlined in chapters 3 to 8: Chapter 3 introduces the equations
of motion and shows that the natural convection turbulent boundary layer has to
be treated in two parts, an outer and an inner region, each governed by a seper-
ate set of equations. In Chapter 4 functional forms of relevant flow quantities are
derived from dimensional analysis and similarity concepts are discussed, leading to
the introduction of the Asymptotic Invariance Principle. Scaling laws for the inner
layer and constraints on the scaling laws of the outer layer will be obtained from the
self-preservation condition of the equations of motion.

From the reasoning that there has to be a region of common validity of both
descriptions and facing the necessity to tie the information from the inner boundary
conditions to the outer layer, we match inner and outer profiles in Chapter 5. Using
the previously introduced Asymptotic Invariance Principle, we derive a power-law
behavior for an intermediate layer. In chapter 6, we find scaling laws for the outer
layer with the information from matching and reconsidering the similarity conditions.
A more physical approach to the outer scales is also given here. The analysis presented
so far naturally leads to a “new” heat transfer law, which is introduced in chapter 7. In
chapter 8, the turbulent kinetic energy component equations are briefly investigated to
find the asymptotic growth rate of the boundary layer. This also yields the asymptotic
behaviour of inner and outer scales and the heat transfer law.

Experimental data is the subject of chapter 9. After a discussion of the state
of experimental data and the influence of a thermally stratified environment, some
experiments are investigated in the light of the new theory. Finally, chapter 10
summarizes the main results of this work, draws conclusions and makes suggestions
for future research.

No detailed derivation of the differential equations governing the fully developed
turbulent natural convection boundary layer can be found in the literature. There-

fore, equations for conservation of mass and momentum, diffusion of heat, turbulence



kinetic energy (Reynolds’ stress) and transport of the mean square temperature fluc-
tuations for this specific problem are derived in Appendix A. An order of magnitude

analysis leading to properly reduced sets of equations is carried out in Appendix B.



Chapter 2

Previous Research

2.1 General Remarks

The early development of the subject was characterized by the publication of many
papers about experiments on natural convection; theoretical work was rare. Only
recently has this situation changed. Analytical work had been mainly concerned with
laminar flow for a long time, no doubt because turbulence is much less tangible.
The set of differential equations governing the laminar natural convection bound-
ary layer flow was first derived by Oberbeck in 1879 [46]. In 1881 Lorenz [41] simplified
this set and was the first to give an expression for the heat transfer based on the one-
fourth power of the product of Prandtl and Grashof numbers, Nuy = f(Gry, - Pr)'/4.
A lot of the early research in natural convection is connected with the name of W.
Nusselt, after whom the nondimensional parameter which is a characteristic num-
ber for the heat transfer is named. Dimensional analysis revealed that the Nusselt
number Nu, = ha/k is a function of the Grashof number Gr, = ¢3(T, — Tw)a?/v?
and the Prandtl number Pr = v/a = c,u/k. For the case of a given constant wall
heat flux, ¢, a modified Grashof number Gr} = Gr, - Nu, is usually employed, since

qw = (T, — Ts).



During the attempt to solve the laminar problem, two principal methods of anal-
ysis had been developed: Solution of the differential equations in an integral form
by assuming plausible velocity and temperature distributions and a direct solution of
the equations with the the aid of a similarity transformation, the latter providing an
exact solution (e.g. Ostrach 1952 [47]). Both methods assume the profiles to have

essentially the same shape for any value of z.

2.2 Turbulent Natural Convection

The criterion for the beginning of turbulence in forced convection is the Reynolds
number Re,, experimental findings suggest that the Grashof number Gr, or the
Rayleigh number Ra, (Ra, = Gr; - Pr) have a similar function in natural convection.
For example in air (Pr ~ 0.7), critical values of Gr, ranging from 3.5 x 10® to
1.5 x 10'° have been reported in literature, showing the dependence on the actual
flow situation with its given disturbances. In the same manner as for the Reynolds
number, we have to distinguish between two critical Grashof numbers, one at which
the flow becomes unstable for the first time and the Grashof number at which the
flow finally becomes turbulent. In general it is agreed upon that turbulence prevails
for roughly Gr, > 10'° (in air).

Early approaches to turbulent natural convection were, as in the laminar case,
based mostly on dimensional considerations. Jakob and Linke [34] suggested that the
local heat transfer coefficient should be independent of z, leading to a heat transfer
law of the form Nu, = Gr!/®. f(Pr), a theory already supported by some of the
early experiments. Another line of thought involves the Prandtl number: For the
fully developed turbulent boundary layer viscous effects should be very small, leading
to the viscosity-free relationship Nu, = f(Gr, - Pr?). Frank-Kamenickij [19] adds
the requirement that the thermal conductivity should also be negligible, so that the

equation assumes the form Nu, = A(Gr, - Pr2)1/2.



In the following paragraphs some theoretical approaches will be discussed in more
detail. Commonly, heat transfer laws are given in terms of a local Nusselt number,
Nu, = hz/k, based on the downstream position z and a local heat transfer coefficient
h, or an average Nusselt number, Nuy, = hq,,L/k, based on the surface height L and
an average heat transfer coefficient h,,,. A scientific investigation of fundamental
flow structures requires the knowledge of the local heat transfer rate, while in most
engineering problems — other than calculating the maximum local heat transfer rate
to prevent damage of employed materials — the average heat transfer rate is of great
interest, since it enables us to predict the overall heat transfer for similar problems.
The average Nusselt number Nuy is usually obtained through integration of the -
dependence of the local heat transfer coefficient, hyyy = %fOL h(z)dx.

One of the first attempts to analyze the turbulent natural convection boundary
layer was made in 1930 by Colburn and Hougen [14]. They discovered that Lorenz’s
equation [41], derived for the heat transfer in laminar flows, “does not agree with the
data for long surfaces, since the exponent is 1/4 instead of 1/3” (c.f. figure 2).
Therefore they introduced “a new conception in the mechanism of heat transmission
by natural convection”: They assumed the existence of a visco-conductive sublayer,
within which both velocity and temperature varied linearly with the distance from
the wall y. At the outer boundary of this sublayer the derivative of velocity with
respect to y was zero and the Reynolds number formed from this maximum velocity
and the “critical thickness” é; corresponded to the critical value found in comparable
experiments on forced convection. A simple balance of momentum and energy for a

layer of fluid lead to the solution:
Nu, = (6Re,, ) 2Grl/3 (2.1)

where Re,, is the critical Reynolds number (in figure 3: Re.. = 130). Thus, the local

heat transfer rate is independent of x. For the case of a vertical surface and large



Grashof numbers they calculated a mean Nusselt number to
Nuy, = 0.104Gr)* . (2.2)

At the same time they conducted experiments with cooling water passing through
vertical pipes at low velocities. For upward flow best agreement with the data was

reached for the following equation:
Nuy, = 0.128(Gr, Pr)t/® | (2.3)

Note that the relations Nu, o< Grl/* for the laminar part of the boundary layer
and Nu, o< Grl/® for the turbulent part of the boundary layer for specified wall

x1/5
T

x1/4

temperature (c.f. figure 2) correspond to Nu, o« Gr :

(laminar) and Nu, o« Gr
(turbulent) for the case of given wall heat flux, since Gr: = GryNu,. The heat
transfer relations for laminar natural convection are found from exact solutions of the
boundary layer equations (e.g. the similarity solution of Ostrach 1952 [47]). There
is still a lot of dissent about the correct heat transfer law for the turbulent regime
(c.f. figures 3 and 4). However, the relations given above could be labeled as “largely
agreed upon”.

A semiempirical, more direct solution was obtained by Eckert and Jackson [17]
by using the integral equation method. Facing the necessity to adopt approximate
expressions for velocity and temperature profiles, they took the following from forced

convection theory (i.e. what the theory provided in 1950, equations are for moderate

Reynolds numbers):

a7 -@) . ren (o)) e

where the velocity profile was modified to account correctly for the zero velocity

outside the boundary layer in the natural convection case. The wall shear stress 7,



and the wall heat transfer rate ¢, also need to be known to be able to solve the integral
equations. Accordingly, Eckert and Jackson replaced them by “wall functions” from
turbulent forced convection work. Note that these adopted profiles and relations
are the only “turbulence” terms, no Reynolds’ stress or turbulent heat flux terms
appear in the calculation. No sublayer configuration was taken into account either.
Proceeding this way they were able to obtain explicit relations for the characteristic
velocity Us, Us o< z°°, and for the boundary layer thickness 8, § o< z%7. The local

heat transfer rate then followed to:
Nu, = 0.0205Gr2/* P/ (1 4+ 0.491P72%) 7 (2.5)

This can be changed to an average value along the plate by integrating the propor-
tionality A oc %2 from the equation above, assuming the flow is turbulent over most

of the surface under consideration (Nuz = 5/6 Nuy):
Nug = 0.0246Gr7> Pri/® (1 + ()_494]3,«2/3)_2/5 _ (2.6)

Examined was the experimental data of Griffiths and Davis [28], who conducted the
first experiments on the turbulent natural convection boundary layer in order to
apply the results to refrigerated food storage, and others. For air (Pr = 0.72, Ra, =

10 — 10'?) the equation reduces to:
Nug = 0.0210 (GrpPr)*® (2.7)

However, the 1/7-power profile is an inappropriate choice for the case of natural
convection and e.g. Cheesewright [11] showed that it is seriously in error.

A few years later, Bayley [5] extended this integral method analysis to fluids of
low Prandtl number. He used the same expressions as Eckert and Jackson for velocity

and wall shear stress, arguing that the velocity profile near the wall is similar to the

10



one in forced convection and that the 1/7-power is characteristic for turbulent flows.
He then rejected their wall function for ¢, and was more careful in the selection
of an approximate temperature profile: Dividing the flow into a laminar sublayer
including the buffer layer and a fully turbulent region, he derived expressions for the
temperature drop across each part. In the turbulent region the heat transter was
described by means of Reynolds’ analogy and the eddy diffusivity v, = f(y) was
estimated with Prandtl’s mixing length model. For the calculations the constant
relation v, = Tr was adopted and the eddy diffusivity for heat was taken to be the
same as for momentum. With the erroneous assumption that for Pr < 1 the thermal
and the hydrodynamic layers have the same thickness, the total temperature drop

can be calculated and leads to the heat transfer law:

1 o 6 1
= —+0.186——++— . 2.8
Nug T + zl+ iPr ( )

Eckert and Jackson’s integral boundary layer equations are now solved for Ug and

0.5

0305 § o 29317 mercury: Us o 2%,

6 with an elegant substitution (Air: Us x x
§ o 20%9).
For low Prandtl numbers (mercury: Pr = 0.01 at boiling temperature) the above

equation can then be rewritten as
Nug = Grl/* (375917927722 =110 L0971 4pp2) ™ (2.9)

where [ = J}f(T —T)dy/6(Ty—Ts). With I = 0.125 for a temperature profile of the
1/7-power form and Grashof numbers between 10'® and 10'® this can be approximated
by

Nug = 0.080Gr/* | (2.10)

where Nuj, = 4/3Nu, was again obtained by integration. This is, of course, the
familiar result for the laminar natural convection boundary layer, since the power of

the laminar heat transfer relationship was found not to change in the turbulent region

11



for Pr < 1.

For air, the heat transfer relation becomes:
Nu, = Gro™ (26.9Gr; %19 Pro® 4 0.35Pr04) (2.11)

Again I = 0.125 was used for the temperature profile and for Gr - Pr = 2 x 10° — 1012
comparison with experiments by Saunders [55] gives a correct prediction for the heat
transfer:

Nup, = 0.10(Grp Pr)**® . (2.12)

He concluded that for fluids of low Prandtl number, extrapolation of laminar flow
data is possible, since even under turbulent flow conditions molecular conductivity
remains the main means of transferring heat in liquid metals.

Tackling the opposite end of the regime, Ruckenstein and Felske [54] derived
an analytical expression for the heat transfer coefficient for a high Prandtl number
fluid in 1980. They used a combination of “inner and outer sets of equations” (c.f.
sections 3.1,3.2) to describe the entire boundary layer flow and the concept of eddy
diffusivity as a turbulence closure model. Knowing that the extent of the temperature
boundary layer will be much less than the velocity layer (for Pr > 1) and even closer
to the wall than the point of maximum velocity, convective transport in this thermal
layer is negligible and molecular and molar (“eddy”) diffusion dominate, leading to
equation (3.21) for the heat flux across it. The eddy diffusivity is found through
expansion in a Taylor series, v; < 3>, and is the same as in forced convection, since it

was assumed that the friction velocity (u? = 7,/p) is the appropriate scaling velocity

in the near wall region. Given the eddy diffusivity, the temperature distribution can
be determined. The wall shear stress 7,, can be related to the heat flux by integrating

the momentum equation across the whole boundary layer neglecting the acceleration

of the fluid (far from the leading edge). With these results, the heat transfer relation
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is obtained as

Nup, = 0.257Pr'/6Grit/* (2.13)

for the case of constant wall heat flux and as
Nuy, = 0.163Pr?/°Gr '/ (2.14)

for the case of constant wall temperature. The last equation is seen to be in good
agreement with the numerical studies of Kato et al. [37] and Noto and Matsumoto [45].

Quite different from previous theoretical work was the analysis of George and
Capp 1979 [26]. It has been the most successful attempt so far in deriving scaling
laws, profiles and heat transfer relations from a “local similarity” analysis of the
governing equations. Dividing the flow into an inner and outer layer, they used “local
similarity” arguments — purely dimensional, but physical — to find scaling laws for
both parts in the limit of infinite Grashof number. For the inner layer, the scales
are Ug; = (gﬂFooz)l/4, Ty, = (FOS/gﬁoz)l/4 and n = (oz3/gﬁF0)1/4. For the outer
layer, George and Capp found Us, = (¢8Fpd)'/3, Ts, = (Fy*/gB8)'? in terms of the
undetermined outer length scale 6. By equating the outer limit of the inner solution
and the inner limit of the outer solution, expressions for velocity (U o y'/%) and
temperature (7' o« y~'/?) can be found for this intermediate regime, which they called
“buoyant sublayer”, in direct analogy with the inertial sublayer in forced convection
flows (c.f. Monin and Yaglom [44]). The matching of inner and outer temperature

profiles also yielded the heat transfer law
Nu, = CH(PT)HQSI/S and Nu, = C}I(PT)H;IM (2.15)

for constant wall temperature and constant wall heat flux cases, respectively; while
the matching of inner and outer velocity profiles shows that Ug, oc Ups in the limit
as H} — oo. It is also shown that the temperature profile is linear near the wall,

(T'—T,) x —y, and that the leading term in the velocity profile is linear (although
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the inner layer was shown not to be a constant stress layer and the extent of this
linear region is limited through the the contribution of the higher order terms and
Reynolds’ stresses). Several researchers compared the results of their experimental
and numerical studies to the scaling laws and buoyant sublayer profiles derived by
George and Capp (e.g. Siebers et al. 1985 [58], T'suji and Nagano 1988 [64], Henkes
and Hoogendoorn 1990 [31]). Although large parts of the proposed theory were con-
firmed, the lack in agreement is attributed to the finite Grashof numbers experiments
were performed at. Note that it will be shown later that the theory proposed by
George and Capp is valid in the limit of infinite Nusselt number, Nu, — oo (and
only in this limit!).

Of course all numerical investigations involve a theoretical part, too, where
turbulence closure models are needed to close the Reynolds-averaged governing
equations. While the first theoretical studies used an approximate profile method
to solve the integral equations (c.f. Eckert and Jackson [17], Bayley [5]), the first
researchers to adopt an eddy diffusivity distribution model were Kato et al. 1968 [37].
They closed the integrated boundary layer equations by assuming distributions of wall
shear stress, heat flux, eddy diffusivity (turbulent viscosity) and a turbulent Prandtl
number Pr; = v;/a; of unity and solved them with a trial and error method, also
using results from forced convection heat transter. For a moderate Prandtl number

Pr and within the range 10'° < Ra, < 10 the heat transfer relationship becomes:
Nug = 0.149G72 (Pro1™ — 0.55) (2.16)

The eddy viscosity model was subsequently used by Yang and Nee 1970 [72], Ma-
son and Seban 1974 [42], Cebeci and Khattab 1975 [10], Noto and Matsumoto [45]
and Kulkarni and Chou 1989 [39]. Yang and Nee let a parabolic rate equation based
on differential field theory govern their eddy viscosity and used a constant turbulent
Prandtl number Pr;. Mason and Seban calculated the turbulent viscosity from a

dimensionally correct combination of an algebraically determined mixing length (c.f.
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Prandtl 1961 [52]) and kinetic energy in order to avoid the contradiction brought in
through the mixing length approach. The eddy diffusivity for heat was determined
by setting the turbulent Prandtl number equal to a constant. Cebeci and Khattab
used an algebraic eddy diffusivity formulation to model the Reynolds’ stress and a
turbulent Prandtl number expression given in terms of the friction velocity w, and
the Prandtl number Pr. Noto and Matsumoto chose the closure model of Kato et
al., then performed a transformation with a streamfunction and dimensionless vari-
ables that were taken from laminar similarity theory to eliminate the dependence on
the derivative of x. This proves advantageous for solving the transformed equations
numerically and they obtain results similar to those of Mason and Seban. Kulkarni
and Chou presented a complete model describing laminar, transitional and turbulent
flow together to study different cases of ambient thermal stratification of a quiescent
atmosphere, where an eddy viscosity model and a turbulent Prandtl number distri-
bution were used for the transitional and turbulent regimes. They also perform a
transformation involving a “laminar” similarity variable and solve the resulting set of
equations numerically.

A K — ¢ turbulence closure model was applied to turbulent natural convection by
Plumb and Kennedy 1977 [51], To and Humphrey 1986 [63], Henkes and Hoogendoorn
1990 [31] and Peeters and Henkes 1992 [49]. Plumb and Kennedy solve equations
for turbulent kinetic energy, dissipation rate of turbulent kinetic energy and mean
square temperature fluctuations. Prandtl [52] and Kolmogorov [38] proposed that
the turbulent viscosity should be proportional to the square root of the turbulent
kinetic energy (a velocity scale) times a length scale representative of the energy
containing eddies. For isotropic turbulence, the loss of energy from energy containing
eddies is equal to the energy dissipated at small scales (equilibrium energy spectrum)
and the entire energy cascade process can be described in terms of a single length
scale. In standard K — e models characterized by that of Jones and Launder [35],

this length scale is then taken to be the dissipation length scale, given by L = K%/?/¢
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on dimensional grounds. Thus, the turbulent viscosity can be written as v; oc K?/e.
The crucial assumption for the validity of this expression is high Reynolds number, so
that the flow tends toward isotropy. Plumb and Kennedy chose a turbulent Prandtl
number distribution, so that Pr; = 2.5 at the wall and Pr; = 0.5 at the outer edge
of the boundary layer. To and Humphrey also used a basic two equation (K — ¢)
model and modified their constants to account for the low Reynolds number effects
of the wall on the inner regions of the boundary layer flow. Henkes and Hoogendoorn
employ a K — € model with low Reynolds number modifications to derive similarity
scalings, which are compared to the GCT9 scales. Peeters and Henkes used a K — €
model with constant turbulent Prandtl number Pr; by analogy between turbulent
transport of momentum and heat.

To and Humphrey 1986 [63] also developed an algebraic Reynolds’ stress model
(ASM) for low Reynolds number turbulent free convection. It is based on truncated
algebraic expressions for wu; and u;t derived from a local equilibrium assumption.
Peeters and Henkes 1992 [49] investigated the boundary layer with two types of second
order models, an algebraic stress model (ASM) and a fully differential Reynolds’ stress
model (RSM), which is capable of capturing the turbulence structure of the flow. Some
of the above mentioned work can be found in Henkes and Hoogendoorn 1989 [30],
where the authors compare the algebraic eddy diffusivity distribution model, the
standard K — e model and different low Reynolds number K — € models.

The theoretical heat transfer predictions introduced in this chapter are compared
in figure 3 (Nu, vs. Gr;) and figure 4 (Nug vs. Gry).

Besides theoretical and numerical studies, numerous experimental investiga-
tions (c.f. [11, 12, 16, 18, 20, 32, 40, 43, 48, 50, 53, 55, 58, 59, 64, 65, 66, 67, 68, 70, T1])
have been carried out on this subject. They will be discussed in chapter 9, where they
are also compared to the theory proposed in the following chapters. A comparison of
scaling functions chosen by the experimentalists is given in table 2.1 (Note: All scales

are expressed in the nomenclature defined in the beginning).
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author(s) inner/ lengthscales velocity temperature | R. stress | t. heat flux
& year outer n,0 Usg Ty Rs Fgq
Cheese- no dis- (gBAT,,x)'/?
\Vl’ight tinction I/GT’J;O'I “lam. buoyancy Tw — Too not plotted
1968 correlation”
FUJII no dis- x/Nuz =7 not
et al. tinction “thermal BL plotted Tw Too not plotted
1970 thickness”
: . Tw—Too _ / 1/2
Smith nodis- | —Gi7agme = 1 (98AT )
1972 tinction “heat transfer “buoyancy Tw Too dimensional plots
distance” velocity”
Kutate- no dis- not
ladze et al. tinction all plots dimensional plotted
1972
\Velty & no dis-
0.2 0.4
. G
Peinecke tinction X (Gi; ) 5?1/ (_;z) not plotted
1976
Cheesewright || no dis-
et al. tinction all plots dimensional not plotted
1982
Miyamoto no dis- not
et al. tinction I/Nuz =7 UM plotted UM2 UMATw
1982
. o2 )1/ 3
Siebers (g—ﬁATw not
et al. inner: w. Temp.-correction: plotted Tw Too not plotted
1 = k T 0.14
Fw dw
V85 (koo ) (Too )
oo T-T .
fO ﬁdy not
outer: “enthalpy plotted Tw Too not plotted
thickness”
Tsuji & Us Fo/u.
Nagano inner: 1//u* “friction “friction not plotted
1988 velocity” temperature”
Tw=T,
outer: —(8%/781/32:0 =7 UM Tw — Too not plotted
Table 2.1: Scaling functions chosen by experimenters to collapse data

17




Chapter 3

The Equations of

Motion

A set of equations governing the fully developed turbulent natural convection bound-

ary layer flow next to a heated vertical surface is given by (see Appendix A, p.81, for

derivation and approximations made):

2—U+aa—z =0 (3.1)
Ug—ngV% = _%aaZ*Jr%(”%_“_Q)
8% (y%—[y] — m) +g98(T — Ty) (3.2)
Uaa—‘:;JrVaa—Z = —%aai* %(V%—Z—W)

Capital letters in the equations refer to mean values of velocities, pressure and tem-

perature while lowercase letters refer to the fluctuating parts.

Turbulent flows in general are characterized by the existence of several length

scales, some of them assuming very important roles in the analysis of the flow. The

range of length scales is bounded between the dimensions of the flow field as the largest
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scale and a finite, small length scale associated with molecular diffusion (viscosity), the
latter preventing the generation of infinitely small scales of motion through dissipation
of small-scale energy into heat. Turbulent boundary layer flows are constrained by
viscosity in yet another way. No matter how small it is, it will always enforce a
no-slip condition at the wall (i.e. under normal conditions. This is not the case
in, e.g. rarefied gases, when the mean free path becomes large enough to exceed
the characteristic length of the flow under consideration, i.e. the boundary layer
thickness. Molecular collisions near a solid surface then become unimportant.) We

will now examine how this affects further treatment of the equations of motion.

3.1 The Main Part of the Boundary Layer

We make the usual boundary layer approximation that 0/dx ~ 1/L < d/dy ~ 1/6,
where L is a streamwise length scale and ¢ is a length scale perpendicular to the
surface. We define characteristic scale quantities for mean streamwise velocity and
temperature as Ug, and T's,, and for fluctuating velocities and temperature as u, and
t,, respectively. Using a standard order of magnitude analysis (c.f. Prandtl 1961
[52], Tennekes and Lumley 1972 [62]) it is easily shown that the equations of motion
within a Bousinesq approximation can be reduced to (c.f. Appendix B, p.94):

ou ou a . .
oT aT [ J— .

subject to the boundary conditions:

U =0 as Yy — o0 (3.7)

= T, as Yy — 00 (3.8)
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and

—uv = 0 as Yy — 00 (3.9)

—vt = 0 as Yy — 00 (3.10)

The continuity equation (3.1) remains unchanged and the y-momentum equation (3.3)
has been used to eliminate the pressure term in the z-momentum equation (3.2). The
leading neglected term in the y-momentum equation is the streamwise gradient of the
turbulent stress, d(—uv)/0x. The leading neglected term in equation (3.5) is the
streamwise gradient of the turbulent normal stress difference, d(u? — v2)/dz, which
includes the pressure gradient, while the leading neglected term in equation (3.6)
is the streamwise gradient of the turbulent heat flux in the z-direction, d(—ut)/0x.
All these terms are of one order of magnitude less than the terms that were kept.
With the above scaling, no viscous and conduction terms remain in the equations
of motion, therefore they cannot be valid close to the wall and fail to describe the
complete flowfield. Equations (3.1), (3.5) and (3.6) are referred to as the “outer” set
of equations.

However, these equations are strictly valid only at infinite Reynolds and Péclét
numbers, Res, Pes — oo. This is of considerable importance in the analysis presented
below, since the properly scaled profiles will reduce to similarity solutions only in this
limit. It is equally important to realize that all constraints on the flow are imposed
at the wall. A solution for the “outer” part of the boundary layer is only possible, if

the “inner” or wall problem has been solved!

3.2 The Near Wall Region

To account correctly for the phenomenon of natural convection, we have to find a set
of equations which includes the crucial information given at the wall. The equations

of motion have to be rescaled so that at least one viscous and one conduction term
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are retained. Defining characteristic scale quantities of mean streamwise velocity and
temperature as Usg; and Ts;, and for fluctuating velocities and temperature as u; and
t;, respectively, it can be shown that a viscous term can only be retained in the

z-momentum equation (3.2) if an inner length scale is defined by

14

Us;

n (3.11)

and a conduction term can only be retained in the energy equation (3.4) if an inner

length scale is given by
!

b)
Us;

nr ~ (3.12)

where 1, nr have to be sufficiently small relative to 6. Rescaling the equations of

motion this way leads to (c.f. Appendix B, p.99):

0 ou
0 & —|v——Tuv B(T — Ty 3.13
o (50 =) +asr -1 (3.13)
0 aor
0 & —|a— —vt 3.14
ok ) (3.1)
subject to the boundary conditions:
U =0 at y=0 (3.15)
aT
—k— = gq, t y =0 3.16
9y q a y (3.16)
or T' = 1T, at y=20 (3.17)
and
—uv = 0 at y=20 (3.18)
—vt = 0 at y=20 (3.19)
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The continuity equation (3.1) remains unchanged. The largest neglected terms in
the y-momentum equation now are the streamwise gradient of the turbulent stress,
d(—uv)/0z and the cross-stream gradient of the viscous stress, d(vdV/dy)/dy. The
largest neglected terms in equation (3.13) are the mean convection terms, U9U/dx
and VOU/dy and the streamwise gradient of the turbulent normal stress difference,
d(u?—v?)/dzx. In equation (3.14), the leading neglected terms are the mean convection
terms, U0T/0x and VOT /0y, and the streamwise gradient of the turbulent heat
flux in the z-direction, d(—ut)/dz. Again, the neglected terms are of one order of
magnitude less than the remaining terms. Clearly, these equations (eqns. (3.1),(3.13)
and (3.14)) are capable of capturing the wall effects and describe the inner layer and
are referred to as the “inner” set of equations. They are also exact only in the limit
of infinite Reynolds and Péclét numbers.

Following an idea from the integral equation method, which was originally devel-
oped by Von Karman [36] and others to solve the classical problem of the laminar
forced convection boundary layer, we integrate equations (3.13) and (3.14) with re-

spect to y. The z-momentum equation becomes

Z/a—U —uv + /ygﬂ(T —To)dy Zv (8_U) S u? (3.20)
dy J )y P
where 7, is the wall shear stress and wu, is the friction velocity defined by this equation.
Because of the presence of the integral of the buoyancy force, it is obvious that
the inner layer cannot be a constant stress layer. This is one of the substantial
differences between the natural convection boundary layer and the forced convection
boundary layer. For the forced convection boundary layer, it was shown by George
et al. [27] and others that in the limit of infinite Reynolds number the total stress is
constant across the inner layer. Thus the wall shear stress provides the inner boundary

condition for the outer layer, and viscosity effects enter the inviscid outer equations

only through this boundary condition. Clearly, in our problem the wall shear stress
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cannot be a fundamental parameter of the flow (see George et al. [27] for discussion
of forced convection problem) and has to be treated as a dependent parameter! Most
importantly (as noted by George and Capp [26]), since the shear stress varies across
the inner layer, u, cannot enter the outer layer analysis.

Integration of the energy equation leads to

PCp

aa—T—Fga<a—T) = - R (3.21)
y=0

where ¢, is the wall heat flux, the thermal diffusivity « is defined by o = k/pc, and Fy
is the “kinematic” wall heat flux defined by this equation. Fj can at most be a function
of z. We conclude that the total heat flux across the inner layer is independent of
the distance y from the wall and therefore, the inner layer is a constant heat flux
layer. In this sense, the wall heat flux Fj, unlike u,, is a fundamental parameter of
the turbulent natural convection boundary layer, since it provides an inner boundary
condition for the outer layer. It directly measures the forcing of the flow in the inner
layer by the imposed conditions at the wall and it also measures the forcing of the
outer flow through the boundary conditions provided by the inner layer. This will be

the basis for the matching of inner and outer profiles (see chapter 5).

3.3 The Buoyant Sublayer

We note the existence of a flow region at the outside of the inner layer where viscous
and conduction terms are losing their importance. This region can also be viewed as
the inside of the outer layer, where the mean convection terms are not yet important.
We are thus considering both inner and outer sets of equations and keep only the
common terms. The governing equations for this intermediate region, referred to as

the “buoyant sublayer” by George and Capp (by analogy to the inertial sublayer in
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forced convection flows, c.f. Monin and Yaglom 1975 [44]), reduce to

0 = %(—W)—l—gﬂ(T—Tm) (3.22)
-
0= o) (3.23)

Clearly, the heat flux across this layer is also nearly constant and dominated by the
turbulent heat flux vt & Fy, to first order. The Reynolds’ stress, on the other hand,
is continously modified by the buoyancy term, a clear distinction from the forced

convection boundary layer.
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Chapter 4

Similarity Considerations

4.1 Dimensional Analysis

(Classical dimensional analysis stems from the famous Buckingham Pi Theorem, which
states (c.f. [29, 57, 61]): “Suppose that a physical occurrence is governed by n
independent parameters and each of these parameters can be expressed in terms of
certain fundamental dimensions (e.g. mass [M], length [L], time [T], temperature
[0]), which are m in total number. Then the occurence can be described in terms of
n — r independent nondimensional quantities, called the II-variables, where r is the
rank of the m x n matrix formed from the m dimensions of the n quantities.” Definite
units of mass , length, time and temperature are chosen, e.g. kilograms [kg|, meters
[m], seconds [s] and Kelvin [K], respectively; these are agreed-upon standards which
are either carefully preserved or reproducible. The fundamental dimensions [M], [L],
[T] and [f] are abstract positive numbers, related to the fundamental units simply
by a multiplication factor. Thus, the dimensionless Il-variables are invariant under
a change of fundamental units. Dimensional analysis applied to problems typically
encountered in mechanics or fluid dynamics can be found in e.g. Sedov 1959 [57] and
Spurk 1992 [61], while a more fundamental treatment of dimensional analysis and

similarity emphasizing the mathematical aspect of it is given in Barenblatt 1987 [2].
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For the turbulent natural convection boundary layer, the only parameters which
can govern the evolution of the flow are either those occurring in the equations of
motion or the boundary conditions. Parameters occuring in the equations of motion
are v, g and «. The ambient fluid temperature T, provides the only nontrivial
boundary condition as y — oc. Typically, either heat flux Fy or temperature T,
are specified at the wall. It is important to realize that only one of these boundary
conditions can be chosen as an independent parameter, i.e. for given z a given
local wall heat flux Fy automatically defines the local temperature drop across the
boundary layer AT, and vice versa (The asymptotic behaviour of AT, = f(Fy) will
be deduced from the GCT79 theory).

Also entering the problem are the independent variables, which are the distance
from the leading edge x and the cross-stream position y. Instead of = we could
also employ the local cross-stream length-scale ¢, which of course is a function of the
downstream position, 6 = é(x). Here we will seek solutions to the governing equations
which depend on the streamwise coordinate = only through the local cross-stream
length-scale 6(x). This is , in fact, the “local similarity” hypothesis which represents
a considerable “leap of faith” on the part of the researchers. Unlike earlier analyses,
however, it will be shown later to be consistent with similarity of the governing
equations (which are the ultimate arbiter).

The theory presented here will consider the case where the wall heat flux Fj is
specified. Data from constant wall temperature experiments can easily be transformed
into a constant wall heat flux form, since Fy and AT, are dependent on each other.
Also, it is straightforward to reproduce the succeeding analysis for the constant wall
temperature case.

Every flow quantity at any position within the flowfield of the boundary layer
can then be described with this basic set of six independent parameters. The powers
of the dimensions of the parameters are arranged in matrix form (c.f. table 4.1).

The rank r of this matrix is three, therefore every quantity in the flowfield can be
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described by n — r = 6 — 3 = 3 independent nondimensional ratios. The application

[ lalv][g8]F[é()]y]
L 2] 2] 1] 1] 1 |1
T 1|1 2 1] 0 |0
g0/ 0] 1] 1] 0 |0

Table 4.1: The II-Theorem: Dimensions of fundamental parameters

of the Buckingham Pi Theorem yields a number of possibilities, the significance of its
results being easily overestimated, at least when the number of II-variables is greater
than two (as is the case here). All it can do in such a situation is suggest a variety
of nondimensional parameters, from which the proper functional forms have to be

selected with care. We choose the following II-variables for consideration:

m = 2 - Pr (4.1)
o
2 IC - .
T (1)
Fy 6 .
H3 = ATwa = NU5 (43)
Y
I, = 4.4

II; is recognized as the Prandtl number, while equation (4.2) defines the local “H-
number”, as introduced by George and Capp [26]. Of course, H; serves an analogous
purpose as the Grashof or Rayleigh numbers, G} and Ra, did in previous analytical
work and plays a similar role as the Reynolds number in forced convection (c.f. Monin
and Yaglom [44]). This new characteristic dimensionless ratio only uses thermal dif-
fusivity instead of kinematic viscosity (both have the same dimensions). A look at the
property tables for fluids of technical interest tells us that the latter shows a stronger
dependence on temperature in liquids, whereas they both show approximately the
same temperature dependence in gases (c.f. figure 5). Therefore, thermal diffusivity
a was employed instead of kinematic viscosity v for its more desirable temperature

dependence in liquids for the temperature differences to be expected.
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II5 defines the local Nusselt number. The Pi-Theorem immediately leads to the
relationship Nus = f(HZ, Pr), which is the local heat transfer law. Thus only two of
the first three are independent, and either Hi or Nus can be eliminated in any subse-
quent analysis. It will be shown below that Nus is in fact the ratio of outer to inner
length scales. This is a significant departure from the earlier GCT79 theory, where the
ratio of length scales was H§1/4, and will be seen to be a key feature of retaining the z-
dependence for finite values of Hf (or Hs). 114 defines a relative cross-stream position
based on a cross-stream lengthscale and provides the third independent variable.

Now profiles are sought which scale only with the local length scale. Therefore

functional forms (scaling laws) of ratios of flow quantities and local scale factors can

be expressed as:

e (ir)

for the mean velocity, mean temperature,turbulent transport of momentum (Reynolds’
stress) and heat (turbulent heat flux), respectively. Scaling laws can be obtained from
the functional forms (4.5)—(4.8), since they have to become asymptotically indepen-
dent of H{ in the limit as Hf — oo in order to be well-behaved. Thus separation
of the z-dependence from fi, f2, g1 and g, seems possible. The scale factors Ug, T,
Rs and Fg are not specified (nor could they be), but must be determined from the

governing equations using the Asymptotic Invariance Principle as set forth below.
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4.2 Similarity Solutions and the Asymptotic In-
variance Principle

Similar profiles of U, T'— T,,, —uv and —uvt are observed at different downstream
locations. “Similarity” (or self-preservation) is said to occur when one can bring
these profiles into congruence by simply scaling them with scale factors which depend
only on one of the variables. An immediate consequence would be that the governing
equations become independent of this variable. The functional dependence of the
equations is then reduced by one variable, which is extremely helpful when dealing
with a two-dimensional or axisymmetrical flowfield. If such a “similarity” actually
exists, a mathematical transformation of variables can be performed to reflect this
fact, separating the dependence of the flow quantities on the new variables, called the
“similarity variables”. The governing equations for a two-dimensional flow are thus
reduced from nonlinear partial differential equations to nonlinear ordinary differential
equations.

An alternative definition is given by George 1989 [23]: “A flow is said to be self-
preserving if solutions to its governing equations and boundary conditions exist, for
which all quantities of dynamical significance have the same relative value at the same
relative location. The flow then has reached some kind of equilibrium where all of its
dynamical influences evolve together. Thus self-preservation is an asymptotic state
attained by a flow once its internal readjustments are complete.”

A set of Reynolds-averaged equations governing turbulent flow is always unsolvable
as it is, some form of turbulence modeling is needed to close the equations. Using
similarity theory can provide further insight without addressing the turbulence closure
problem.

Similarity solutions had first been introduced to fluid dynamics by Blasius in 1908
[7], who applied them in laminar boundary layer theory leading to the well-known

“Blasius-equation”.
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Analytical approaches to any turbulent convection problem usually abandon full
similarity solutions at the outset and hypothesize the existence of “local similarity”
solutions. The word “local similarity” is somewhat misleading, since scaling laws
are actually found on purely dimensional grounds. In the analysis presented below,
however, full similarity solutions will be sought for inner and outer sets of equations
separately. (This relatively new idea was introduced by George et al. 1994 [27] in
considering the forced convection boundary layer) Since both sets of equations are
exact only in the limit of infinite Reynolds and Péclét numbers — or infinite H-
number — their full similarity solutions will also be exact only in this limit. The
neglected terms vanish only in the limit of infinite H-number, thus the governing
equations will be H-number dependent for finite H-numbers and lose this dependence
only in the limit. This knowledge will be used to determine the functional forms in a
region of common validity, the procedure is referred to as the Asymptotic Invariance
Principle (AIP). Similar arguments are usually made for free turbulent shear flows, the
difference for boundary layer flows is that we are seeking two sets of solutions, which
reduce to full similarity solutions in the limit of infinite H-number (or, equivalently,
infinite Nusselt number). A very important aspect of the theory presented here is
that no scaling laws are defined a priori; they will be determined from the conditions

for similarity.

4.3 Similarity of the Inner Equations

The inner local cross-stream length-scale is given by 7(z), which remains to be de-
termined. As indicated by dimensional analysis, we choose one similarity variable to
be y/n, and leave the variable x unchanged. We seek similarity solutions to the inner

equations of the form:

Uz,y*) = Usi(z)fui (y*, Pr) (4.9)
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T(z,y*) = Tu(z) = Tsi(x)fa (v, Pr) (4.10)
—W(m,y"’) = Rsi(x)gi (y+,Pr) (4.11)

—vi(z,y%) = Fsi(a)gni (v*, Pr) (4.12)
where the “inner” variable y* is defined by:
Y .
yT == . 4.13
p (4.13)

Substituting these functional forms into equations (3.20) and(3.21), nondimen-

sionalizing and clearing terms leads to

u? v ;| Bsi
o - [l [

nUs; Us;®
+
3Ts:1 1 . . AT,
[ fuma [
K3 0 K3

and

Fy o , [ Fy; ]
_ _ i D 4.15
USZ'TSZ'] [UUSZ'] Jai ¥ UsiTs; 92 (4.15)

To this point only a transformation of variables was performed. Full similarity is only

possible if all the terms in brackets have the same x-dependence which leads to the

conditions
uf v Rs; ngB31s; ngBAT,
5 X o 5 X 5 X 5 (4.16)
Us; nUsi  Us; Usi Us;
and
Fo « FSi (4 17)

x ox
Usils;  nUsi  Usi1's;
Solving this system of six relations for the six unknowns Ty;, Fs;, n, Us;, Rs; and u.

gives scales of the form:

TSi X Tw—TOO = ATw (418)
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Fs;

Us;

Rg;

Fy
aAT,
Fy
a AT
ﬁgﬁF—(}’
AT? |
Iy -

[}

agp

(4.19)

(4.20)
(4.21)

(4.22)

The proportionalities can be transformed into exact equations by introducing

constants of proportionality. These constants can in any case be absorbed into the

functions fi;, f2:, g1; and g¢o;, which determines our inner scales as

Ts;
Fg;
n

Us;

Rg;

T,—-T. = AT,

(4.23)
(4.24)

(4.25)
(4.26)

(4.27)

The inner length scale, n = AT,/ Fy was originally used by Fujii et al. 1970 [20] as

“thermal boundary layer thickness” and was adopted by Smith 1972 [59], who termed

it “heat transfer distance”. A graphical explanation of 7 is given in figure 6. It is a

natural choice since it is the heat flux ((07/0y),=0) which ultimately drives the flow.

Note that the local Nusselt number, Nus, is the ratio of outer and inner lengthscales,

which has to be large for the scaling to be valid since it is based on reduced inner

and outer equations.

The value of u, has been determined to within a constant by the similarity con-

straint (the exact value of w, cannot be determined this way since it would over-

specify the problem). Note that the occurence of both AT, and Fy will permit the

x-dependence which was missing in the GCT9 analysis.
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The inner equations (3.20,3.21) can now be written as:

ot
1= fi'"+ g1 + / fa(9T)dyt +yt (4.28)
0
and
—1=foi' +9u (4.29)

The Prandtl number dependence has been incorporated into the inner scales and is

thus taken out of the functional formulation, as opposed to the GCT9 theory.

4.4 Similarity of the Outer Equations

Note that the outer set of equations is independent of the Prandtl number, since both
viscosity and thermal diffusivity do not occur in equations (3.5) and (3.6). We now
choose the similarity variable to be y/é, and seek similarity solutions to the outer

equations of the form:

H
w
—_

=
o
K3

where the “outer” variable y is defined by:
_ Y .
y== . 4.34
y=3 (4.34)

Note that the derivative of the outer variable y with respect to x does not vanish,
since 6 = 6(x). The cross-stream component of the mean velocity V can be written

in a similarity form (in terms of Us,, eqn. (4.30)) with the help of the continuity
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equation (3.1) and integration by parts:

Vo ldUso(g—l— USO%] /Oy fro(y)dy — ldU_M(S] + lUSO ]yfm( ) . (4.35)

dx d

Upon substituting and clearing terms the z-momentum equation (3.5) assumes the

following nondimensionalized form:

lUiodgfol (f1°2_ /flf)!j ) - [ﬂflo /floﬁ j

_ | Bs | 69875,
USO e USO

] fao (4.36)

Similarly, substitution into the energy equation (3.6) and clearing terms leads to

Ug, dzx
Y
FSO /
o = o . 437
l ] f2 0/ [USOTSO] 92 ( )

As before, only a change of variables was performed to this point (i.e. a similarity

0 dTSo § dUSo / Y .
[Tso dx ](flof%—l_flo) - l ]f% O/flo('!/)d’!/

transformation, and the transformed equations only reduce to ordinary nonlinear
differential equations, if the terms in brackets have the same x-dependence). From

the self-preservation condition, we obtain the relations

6 dUSo 6 dTSo ﬁ RSO gﬁTSOé FSO (4 38)
Us, dx = Ts, dx S Us,” = Us,” = Uso,Ts, '

From the first three terms we find

Ts, o< 6™ and Ug, o< 6" . (4.39)
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Substituting this into the fourth and fifth term gives

Rs, o< Ts,6 oc 8™ (4.40)

From equation (4.38) it is clear that there must be two different velocity scales in
the outer layer, as opposed to traditional boundary layer analysis. The scale for
the Reynolds’ stress is not just the square of the velocity scale, as usually assumed
(c.f. Tennekes and Lumley [62]), but it also depends on the growth rate of the
boundary layer, Rs, ~ USOQd(S/dJ:. The requirement Rg, = Us,? seems too restrictive,
experimental findings suggest that the growth rate dé/dz, for the range of finite
Grashof numbers experiments were performed at, is not constant. Note that we
cannot determine the outer scales yet, since only homogenous boundary conditions
are given at the outside of the outer layer. The missing piece of information must be

acquired from matching to the inner layer.
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Chapter 5

Matching of Inner and Outer
Profiles

Both inner and outer functional forms describe the entire flowfield as long as the
dependence on the nondimensional ratios (as in eqns. (4.5)-(4.8)) is retained. Since
Nus = f(H}) and Nus — oo as Hf — oo, we can conveniently use the ratio of

lengthscales as a parameter instead of Hf, defining

n ATl,«a 1
s Fy 6 s (5-1)

E =

as our dimensionless matching parameter (similar to a perturbation parameter), there-
fore ¢ — 0 as Hf — oo. The solutions to each set of governing equations reduce to
similarity solutions (inner: eqns. (4.9)-(4.12), outer: eqns. (4.30)—(4.33)) only in
the limit as ¢ — 0. The outer forms then fail to describe the behaviour close to the
wall while the inner fail to describe the outer part of the boundary layer. The solu-
tions thus degenerate in different ways at infinite Nusselt number, we will investigate
whether they possess a common region in this limit.

Considering mean velocity first and with the argument made above, we can equate
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the inner and outer profiles at finite ¢

Us;

fio(y,€) = Us. Jui (y+,€) = ru(e) fu: (y+,€) : (5.2)

The ratio ry(e) = Usi/Us, (unknown so far, Us, remains to be determined) is not
constant and is a function of ¢ only.
The velocity derivative must also be the same for both forms, which can be written

as:
ia(flo) _ £af12
fio Oy frioy*t

According to the AIP, both f1,(y,¢) and f1;(y™, &) must become asymptotically in-

(5.3)

dependent of ¢ in the limit as ¢ — 0, otherwise the velocity scales would have been
improperly chosen.

As the limit ¢ — 0 is approached, the question is: Does an overlap region exist,
for which equation (5.2) is still valid? Since both lengthscales  and 6 are increasing
with downstream position, this overlap layer will move further away from the wall in
physical variables. Therefore it is necessary to introduce an intermediate variable g
which remains fixed in the overlap region for any z, regardless of what is happening
in physical space (c.f. Cole [15]). (Note: This is not necessary for turbulent natural
convection between two vertical plates (c.f. Elder [18]) since the matched layer will
remain at fixed distance from the wall because of the streamwise homogeneity, c.f. 7.)

This can be accomplished by a variable defined as:

=
Il
Ny
+
Q)
3
N
ot
i
SNa—

or, for inner and outer variables with ¢ = y/y*:

y'T = ye and y=ge" . (5.5)

For 0 < n < 1, the variable § can stay fixed in the overlap region as ¢ — 0 while
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y — 0 and y* — oo. Rewriting equation (5.2) with g:

fio (’!%5) = TU(€)f1i (‘!jg_nv@) (5-6)

Note that taking the derivative with respect to § of equation (5.6) also results in
equation (5.3). Differentiating equation (5.6) with respect to e, multiplying by ¢/ fi,

)

= a(e) +{ az(e,y™,y) } (5.7)

and with equation (5.3) we obtain:

_ € aflo
yt flo 85

g aflo
flo a!j

e e Ohi
ry Oe fui 0Oe

€

The first term on the right-hand side is only a function of ¢ while the second term
(in braces) contains all the residual y-dependence. Since fi,(y,¢) and fi;(y*,¢e) are
asymptotically independent of ¢ (as determined by the AIP) and since their deriva-
tives with respect to § vanish for the same reason, the first term dominates and the
expression in braces represents the contribution from higher order terms. To leading

order in ¢ equation (5.7) can thus be written as (with eqn.(5.3)):

7 0fL, yt Ofy
J 9hel _ 2 ¥ 00 (5.8)
Jio Oy c Jii Oyt e
The functional forms can now be integrated to yield to first order:
fro = Cro(e)y™® (5.9)
fii = C1i(€)y+a(6) (5.10)
Substituting these solutions back into the matching condition (5.2) leads to
: a(e)
ry = U5t _ Cuole) <Q> = GlE) o (5.11)
Us, Chi(e) \é Chi(e)
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When writing equation (5.7) with (5.11) we can find an equation constraining C1;,

C1, and a: L d [ (Ol ' 5.12
z &) dz—:[ (010(6))] o

This is, of course, the criterion for the vanishing of the neglected higher order terms

in equation (5.7) since it came from solutions that were obtained by neglecting these
terms. The velocity profile in the matched layer — the “buoyant sublayer” — is thus
seen to be a power law (to first order) with Nusselt number (H-number) dependent
exponent and coefficients. Again, since f1,(y,¢) and fi;(y*, ) must be asymptotically
independent of the Nusselt number (or H-number), so must Cy;, Cy, and a. Therefore
as ¢ — 0,

Chi(e) = Crice, Cio(e) = Crope and a(e) — as (5.13)

We will discuss their asymptotic values later.
For the mean temperature, we can equate the inner and outer profiles at finite ¢,

le.,
T

f20 (ga 5) - TS

(1 + fu (y+,5)) = rp(e) (1 + fu (y+,5)) . (5.14)

Proceeding in the same way as before, we find solutions to first order for the functional

forms:

fao = Coo(e)g"® (5.15)
1+ foi = Cosle)y™" (5.16)

Substituting into the matching condition (5.14) yields

rr

| be)
C Tsi Cale) <Z> _ Onle) b (5.17)

T Ts,  Cule) \§  Cale)

In the same manner, we find for the Reynolds’ stress:

910 = D1,(e)y°® (5.18)

39



g1i = Dyi(e)y™®

and

'R

_ RSi _ Dlo({’:) <7]>C(6) _ Dlo({‘:)gc(s)
Rs,  Dyi(e)

For the turbulent heat flux:

and
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Chapter 6

Scaling Functions for the Outer
Layer

6.1 Outer Scales From Matching

We will now attempt to find the outer scaling laws of eqns.(4.30)—(4.33) from knowing
the inner scales and the matching of the profiles, which links information about the
inner scales to the outer scales. This is reasonable physically since this is a boundary
layer flow driven exclusively by the heat transferred at the wall. Whatever happens
there has a direct influence on the outer part of the flowfield. From equation (5.11)

we know

Chi [\~ C1i
UO:UZ-—<—> = Ug;— Nu;s" 6.1
So = SioL \6 0, (6.1)

With the inner velocity scale found from similarity (eqn.(4.26)) we can obtain the

outer velocity scale as:

(8] Ang Ch' ( F05 )a .

Us, = —
s Prgﬂ Fy?2 Cio \ AT,

L CuNgBé o oy
= (= Z 0 NugU AT 2
(Pr Clo) 0 (6:2)
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From the matched layer equation (3.23), we know that

FSo X FSi = FO (63)

to first order. From the fifth and sixth term of the self preservation condition of the

outer equations (4.38) we find the outer temperature scale

FO 1/2 1 Cli 1/2
Ts, — Us, = (— ) Nus@= V2 AT, . 6.4
So X (gﬁ 58 ) PrCy, s (64)

The fourth and fifth term of (4.38) yield the outer Reynolds’ stress scale

1 Gy
PT Clo

1/2
Rg, o ( ) gB 6 Nuse=V2 AT, . (6.5)

The ratio of constants, Cy;/C1,, is a function of the ratio of lengthscales, /4,
but can be eliminated using constraint (5.12). We now have determined all the outer
scales in terms of the exponent a(e) and an outer lengthscale 6. The exponent a(e) can
be determined by curve-fitting in the buoyant sublayer region. The actual boundary
layer thickness ¢ is difficult to measure because of low mean velocity and temperature
difference and high turbulence intensities in the outer layer. Possible choices for 6
could be either displacement, momentum or enthalpy thickness. The limiting value of
a(e) and the physical significance of the integral boundary layer thicknesses in terms
of 6 is discussed in chapter 8.

From equation (5.17) we know

Cy
TSO = TSZ—Q Nufsb ; (66)
cY20

with the outer similarity condition (4.38) we can write

Czi)Q 913 6

o
so & 020 FO

Nug® AT, . (6.7)
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Comparing eqns.(6.2) and (6.7) shows that a and b are constrained by:

20 =a—-1 . (6.8)

From equation (5.20) with eqns.(4.38) and (4.27) we find

Dy; ? gBé 2¢—2 2
o Nus==* AT, )
Uso o (Dlo) Fy (6.9)
and a constraint for ¢ and c :
2e=a-+1 . (6.10)

From eqns.(3.23) and (5.21), (5.22) it is clear that d = 0 to first order.

6.2 OQOuter Scales From Physical Argument

When comparing the inner and outer scales of George and Capp [26], it is found
that Us;/Us, = (7]/5)1/3 and Ts;/Ts, = (7]/5)_1/3. The George/Capp scaling can
be interpreted as a special, more restrictive case of the new (inner) scales, since it
includes the additional requirement T's; o Fgf and Re, = nUs;/v = const. (and

therefore Rg; ox USZ-Q). In the limit as the ratio of lengthscales vanishes we have:

Us; Ts; n
— 0, —
USO TSO 5

— 0. (6.11)

This behaviour makes sense physically: The boundary layer is trying to lose its
streamwise inhomogeneity and become a channel flow. In a fully developed turbulent
natural convection channel flow Us; < Usg, and Ts, < T; (c.f. Elder 1965 [18] and
figure 7). It will now be attempted to find ratios of inner and outer scales which

satisfy

Usi 77)“
’ 12
o <5 a0, (6.12)
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and

Ts; U)b
— b 1
oo (5 , <0, (6.13)

which is a “more general” form of the George Capp scaling. Knowing that

n aAT,

= = = Nus™" 14
S 5F0 Us ) (6 )
we find e.g. an outer velocity scale to be
1 gBé -1 2
0 X —— Nus*™" AT, . 15
Us, Pr R Us (6.15)

This leads, of course, to the same scales as were found by using the matching with
the Asymptotic Invariance Principle AIP, since the physical argument made above in
equations (6.12) and (6.13) is also the result from the matching! The outer scales and
an additional constraint on the power laws (¢ > 0,5 < 0) in the buoyant sublayer can

thus be found from purely physical arguments.
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Chapter 7

A “New” Heat Transfer Law

The heat transter relationship can be obtained from the remaining similarity condi-
tions of the outer equations (4.38). The outer scales now contain information from
the inner layer and therefore from the wall boundary conditions, since they were de-
rived from the matching with the AIP. From equation (6.3) and the first three terms
of equation (4.38) it follows that

dé
FO X USOTSO% . (71)

Substituting from equations (6.2) and (6.4) immediately yields the local heat transfer

law

46\ 203
Nug (Hgd—) . (7.2)
T

The appearence of dé/dx may at first glance seem surprising. However, it directly
measures the evolution of the boundary layer. It will be shown below to be related

to the local turbulent Reynolds number and to be asymptotically constant.
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Chapter 8

The Asymptotic Limit

8.1 Turbulence Quantities and dé/dz

An analogous similarity approach can be applied to equations governing any statistical
quantity. Note that this will not be discussed further in this thesis, but is one of the
main points of interest for future work. Here, we will only take a quick look at some
terms of the component equations of turbulent kinetic energy and use traditional
dissipation scaling arguments to find the asymptotic behaviour of the boundary layer
growth rate, dé/dx. The transport equation for the streamwise component of the
kinetic energy, i.e. the wyus-component of the Reynolds’ stress equation (A.52), in

the outer layer reduces to

01— Jd1— ou _
U—u2+V—u?22... —uv— + gBut — ¢, 8.1
dz 2 dy 2 Jdy 99 (8:1)
where “...” represent the pressure strain rate and transport terms, which are not

important for the argument below. If Kg,, and Dg,, represent scale quantities for

the streamwise kinetic energy and dissipation, respectively, and G'g, is a scale for the
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vertical turbulent heat flux, then similarity is possible only if

dé 0 d[(Suo RSO g/BGSo(5 I)Suo(5 (8 2)
dx = [(Suo dx ™ [(Suo = USO[(SUO = USO](SUO ‘

Using eqn.(4.38)), it follows that Kg,, o< UZ,, so that

Ug, dé .
S do etc. (8.3)

DSuo X

(Outlook: By comparing the scaling of the three component equations of turbulent
kinetic energy, it can be shown that similarity of the Reynolds’ stress equation is
only possible if dé/dx = const. (c.f. George 1994 [25]). For the lower order moments
though, dé/dx # const. does not contradict similarity! Thus, the similarity solution
for lower order moments (in momentum and energy equations, as outlined here) will
be like a first order approximation for finite H;.)

George 1994 [25] (following George (1992) [24]) uses the traditional energy spec-
trum arguments of Batchelor 1953 [3] to argue that Dg,, o< U2, /8 in the limit of
infinite turbulence Reynolds number, Res = wé/v. Thus, in this limit (and only in
this limit!), dé/dx = const. and the asymptotic boundary layer grows linearly. In
practice, a turbulent Reynolds number of appproximately 10% to 10* is required to
reach this limit. The physical reason for this is that at finite turbulent Reynolds num-
ber, dissipation occurs over the entire energy spectrum, since energy-containing and
dissipation wave number ranges are not separated. For all finite turbulence Reynolds
numbers, dé/dx will depend on the local Reynolds number.

Similar relations can be derived for all other turbulence quantities of interest.
Their implications on similarity solutions of the type described in section 4.2 have to

be investigated subsequently.

47



8.2 Asymptotic Limit and GC79 Theory

It is clear from the above that in the limit as the turbulent Reynolds number increases
without bound (Hj, Nus — oo) the TNCBL asymptotically grows linearly, since
dé/dx = const. 1t follows immediately from the outer similarity conditions (4.38) that
908Ts,6 < U2, and Us,Ts, < Fy. Thus Us, (gﬁFo(S)l/S and T, o F()Z/S/(gﬂ(S)l/S,
regardless of the z-dependence of Fy. These are exactly the outer scales of GC79
found from local similarity arguments at infinite Reynolds number.

Now that the outer scales are determined in the limit, the ratios of inner and outer
scales can be used together with the heat transfer law to obtain the limiting values for
a, b, c and d. The results are ao = +1/3, boo = —1/3, ¢ = 2/3 and do, = 0 (Note:
n =a, m =bin eqns. (4.39,4.40)) . It follows immmediately that Nus o HY4,
which is again the GC79 result and known to be the most widely accepted heat
transfer relationship for the turbulent natural convection boundary layer. Thus, the
new inner and outer scales are proportional to the GCT9 inner and outer scales in the

limit as Hy — oo (and can be reduced to them using the asymptotic heat transfer

law, Nus oc Hz'/*%).

8.3 Integral Boundary Layer Thickness as Outer
Lengthscale

We can write mean temperature and velocity in a composite profile form which is
valid over the entire boundary layer. This can be accomplished by e.g. writing the
inner profile in outer variables, adding the outer profile and subtracting the common
part. With the overlap region providing the common part, the composite temperature

profile in outer variables is given by

T =T =Tsof2 (y:6) + Ts: [(1 + fai (y/e.€)) — Ca (‘3?/5)[)] (8.4)

48



and the composite velocity profile in outer variables is given by
U="Usofio(y,8) + Us: [(L + fri(y/e,€)) — Cri(y/e)"] - (8.5)

Using these composite profile forms, we can further state about the integral thick-

nesses: The “enthalpy” thickness, defined as
or = | ———dy (8.6)

is not a promising candidate for an outer length scale, since 67/6 — 0 as Nus — oc.
Although, with 67/6 Hg‘_l/g, we will not see much variation over a limited range of

Grashof numbers (c.f. the experiments of Siebers et al. 1985 [58]). The momentum

7# (8.7)

is a possible outer lengthscale, since 6;;/6 = const. as Nus — oo, if we require

thickness, defined as

Unr < Us,. Matching their velocity profiles for the inner and outer layers and letting
n/6 — 0, George and Capp [26] were able to show that Uss/Us, = const. in this limit.
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Chapter 9

Experimental Data

9.1 On the Value of Experimental Data

Discrepancies in the turbulent regime exist not only between the expressions derived
in theoretical work (as shown in chapter 2 and in figures 3 and 4), but also among
a variety of correlations given by experimentalists. Possible sources of these discrep-
ancies which occur over relatively narrow ranges of Grashof number among various

data sets or even within a single data set, are:

e The influences of property variations with temperature (i.e. those other than
the essential density difference which gives rise to free convection flows). This
implies a departure from constant fluid property description at moderate and
high temperature differences. Clausing 1983 [13] was able to reduce the scat-
ter in the heat transfer data with a variable property correlation. Carey and
Mollendorf 1980 [9] showed that in common liquids the major temperature vari-
ation is in the absolute viscosity p (c.f. figure 5). Property variation is most
commonly accounted for by the reference temperature method. The property
ratio method was introduced by Fujii et al. 1970 [20]), Clausing 1983 [13] sug-
gested using an additional dimensionless group of the form T,,/T.,. Siebers et

al. 1985 [58] used a combination of both to modify their inner length scale (c.f.
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table 2.1).

e The thermophysical properties which were used to reduce the dimensional ex-
perimental data to dimensionless variables. Even data given in recent books on
heat transfer differ at high temperatures (e.g. for thermal conductivity of air).

Interpolation errors contribute to discrepancies, too.

e Errors due to radiative heat transfer: The estimate of radiative heat transfer
is quite often on the order of magnitude of convective heat transfer, in the
experiment by Griffiths and Davis [28] it even exceeded the convective heat
transfer. Warner 1966 [69] used a correction for radiation losses inferred from

laminar theory and his relatively scattered laminar range heat flow data.

e Drafts or currents due to extraneous sources. Warner states: “...ambient turbu-
lence caused by workday laboratory operations had a large effect upon the air
in the test space.” “ ...to eliminate this, the apparatus was isolated (...) to
minimize the effects of ambient room disturbances.” *“...test were conducted

(...) while convective disturbances in the room were minimal.”

o A stratified environment: Even small changes of the temperature gradient in
the direction of the bodyforce can cause significant differences in the results.

This is discussed in more detail in the next section.

e Three-dimensionality of the mean flow. Accurate two-dimensionality may not
be obtained in flat plate experiments owing to side wall or edge effects. Fujii
et al. [20] were familiar with this difficulty from own previous experiments and

met it by using vertical cylinders, which introduces effects of curvature.

e Conductive heat transfer: Conduction terms are usually neglected in the main

part of the boundary layer when drawing up an energy balance.

Commonly, only relatively small differences arise from the sources of errors listed

above except for the thermal stratification of the environment. Experimental data
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should in general be viewed critically, since experimenters will always encounter dif-
ficulties in performing the wanted experiment (Did they really measure what they
thought they were measuring?). The value of dimensionless data can also be greatly
reduced when given without detailed information on property evaluation.

Measuring turbulent natural convection flows has always been a difficult task: Hot
wire anemometer velocity measurements lose their accuracy as the turbulence inten-
sity \/u=2/U5 gets higher. Especially in the outer part of the TNCBL we encounter low
mean velocities and violent fluctuations. (Moving hot-wires can solve this problem,
but were not utilized in any of the referenced experiments.) Laser Doppler Anemome-
ters can also be adjusted to very low mean velocities by creating moving fringes in
the measuring control volume, but suffer from refractive index variation within the
field.

The state of the published experimental data is such that one could argue for (and
against) a lot of things from it. With the data available for the turbulent flow regime,

it can at least be shown to be consistent with the proposed theory.

9.2 The Influence of a Stratified Environment

Ambient stratification is often neglected and can easily be shown to lead to discrep-
ancies between theoretical and experimental results. The importance of the ambient
stratification can be understood from the energy equation (3.4), rearranged with help

of continuity (3.1) and integrated from 0 to oo with respect to y:

d 7 _ AT, T
%O/[U(T T+ ul]dy = Fy — %O/Udy (9.1)

Clearly, positive ambient stratification acts like an “energy sink”, since the volume
flux per unit depth is positive for a heated wall. The energy flux (left-hand side) will

be less than in an unstratified environment, the second term on the right-hand side
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“consumes” buoyancy.

Let us take a look at an example: Hoogendoorn and Euser 1978 [32] reexamined
the data of Cheesewright 1968 [11] and found up to a 60% difference between the
local Nusselt number calculated from his mean temperature and velocity profiles and
his relation for the Nusselt number, concluding that his velocity measurements were
seriously in error. They noted that the heat balance across the boundary layer would
fit the Nusselt number relation, if the higher velocities found by Mason and Seban [42]
(with constant ambient temperature) were used. Cheesewright used the temperature
gradient at the wall to calculate the Nusselt number, which is therefore representa-
tive of the total heat flux. Of course, the Nusselt number calculated from U and T'
profiles will be lower in the presence of an ambient temperature gradient AT, /dx.
Cheesewright and lerokiopitis 1982 [12] then remeasured the velocity profiles, this
time accounting for ambient stratification (The energy equation given by them can
be obtained from equation (3.4) through integration by parts and is equivalent to
the formulation used in eqn. (9.1)). An estimate for the influence of temperature
stratification at y = oo can be obtained from data supplied by Smith 1972 [59], who
performed experiments on the same apparatus at “very stable laboratory conditions”
(according to Cheesewright). Smith reported a vertical ambient temperature gra-
dient of approximately 1.1K/m and thus, the second term on the right-hand side

of equation (9.1), dggo Jo° Udy, amounts to 15...23% of the wall heat flux Fy for

Grashof numbers ranging from 2.82x10'° to 6.81x10'°! Therefore, the hot-wire data
of Cheesewright [11] (and in general) may still be of doubtful accuracy for the high
levels of turbulence towards the outer edge, but should be fairly accurate in higher ve-
locity regions. Hoogendoorn and Euser would have found much less discrepancy, had
they allowed for thermal stratification (which they did in their own experiment for a
variation of ambient temperature of “only” 2K over 1.8m !). Cheesewright 1968 [11]
did not provide any information on stratification while the variation in the experi-

ment by Cheesewright and lerokiopitis 1982 [12] was 8K over a height of 3.5m. Note
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that equation (9.1) neglects the entrainment velocity at infinity, Vo, (Ve & 0.03 Uy
calculated from Smith’s data).

The importance of local conditions is evident from the above, i.e. the necessity of
including ambient stratification to satisfy the governing equations. Even when ther-
mal stratification is accounted for, large ambient temperature gradients will probably
cause the flow to be quite different from its unstratified counterpart (e.g. turbulent

buoyant plume experiments by Beuther [6]).

9.3 Acquisition of Experimental Data

Data utilized in this chapter was acquired from enlarged plots, taken from publications
of experimental studies using a digitizer setup. Reliability of this setup and reprodu-
cabilty of the digitized data were tested (and found to be satisfactory) by measuring
several graphs by hand and by digitizing single graphs up to five times and comparing
the results (single sets and averages). The combined accuracy of the digitizing pen
and pad (minimum stepsize) and the procedure of reading data points from graphs
was, of course, limited. Therefore, possible translation errors (and also the state of
the experimental data itself. c.f. section 9.1) will allow only qualitativestatements
regarding the validity of a theory. A prerequisite to meaningful comparisons with
dimensionless data is the knowledge of the local conditions (7, T, Fo, , etc.) at
each point as well as the temperature physical properties were evaluated at. For some
data sets, missing information had to be acquired by iteration until the data set was
consistent in itself.

The experimental data were then transformed to a nondimensional form using the

proposed scaling functions.
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9.4 Comparing the Proposed Theory to Experi-

mental Data

9.4.1 Explaining Plots of Experimental Data with the New
Theory

Before taking on the enormous task to reinvestigate experimental data, it was some-
what reassuring to be able to explain virtually every plot published in literature.
To name a few:

Tsuji and Nagano’s 1988 [64] “outer” variable plots for mean velocity and temper-
ature are seen not to work very well on the outside of the boundary layer but collapse
the data perfectly over the inner layer. This was to be expected, since they used the
inner lengthscale n introduced here.

The same applies for the mean velocity plot of Miyamoto et al. 1982 [43]. Their
plots of Reynolds’ stress wo and turbulent heat flux v¢ in mixed outer and inner
variables do not collapse either. They chose scales (Rs = Us?, Fs = UsTs) which
were shown to be valid only in the limit as Nus — 0 by this theory. Both plots show
noncongruence clearly due to downstream development, which was not accounted for
by their only asymptotically valid scaling functions.

In a subsequent publication, Tsuji and Nagano 1989 [65] successfully used the
momentum thickness 6y = [ U/Upndy to collapse velocity data in the outer layer.
The thermal boundary layer thickness 67 = [5° AT /AT, dy achieves good collapse of
temperature profiles over a range of Gr, = 1.55x10'° to 1.80x10'! for reasons given

in section 8.2.

9.4.2 Mean Temperature Profiles

Mean temperature profiles were plotted in the inner variables found from the theory

introduced here (and in inner variables of George and Capp [26] where noted).
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Plotting near-wall data of Smith 1972 [59] we cannot see much difference on a lin-
ear plot (c.f. figures 8 and 10), both the GCT9-scales and the new scales give reason-
able collapse. When stretching out the near wall region by using a semi-logarithmic
plot, the new scaling laws are seen to collapse the data better for a region up to
yt =2...3 (in new variables. Multiply by 4.1...4.5 to obtain y* in GC79-variables),
as seen in figures 9 and 11.

Data from different experiments, i.e. Tsuji and Nagano 1988 [64], Miyamoto et al.
1982 [43], Smith 1972 [59] and Cheesewright 1968 [11], which were plotted in inner
variables are compared in figures 12 and 13, where the excellent collapse over the
inner part of the boundary layer becomes apparent. In figure 13 the buoyant sublayer

power law region can clearly be detected.

9.4.3 Mean Velocity Profiles

Mean velocity data of Cheesewright [11] is plotted in figures 14-17. The flow was
suspected to be not fully turbulent at the lowest H-number plotted (also noted by
other researchers). The new scales pull the data closer together to a point further
away from the wall.

While the collapse obtained with the velocity data of Cheesewright was not
very satisfactory (due to high ambient temperature stratification?), the effect of the
new scaling laws explains itself fully with the plots of near-wall velocity data from
Smith [59] in figures 18-21. Very good collapse over the inner part of the boundary
layer is obtained (Note that the plots are stretched out laterally, the boundary layer
ends at approximately y* = 40).

Another plot showing excellent collapse of the mean velocity data of Tsuji and
Nagano 1989 [65] in outer variables is presented in figure 18. Here the asymptotically
valid outer velocity scale Up; o< Us, and the momentum thickness 6y were utilized to
nondimensionalize the data.

Concluding this section, it can be said that the need for tabulated experimental
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data became more and more obvious the more this project advanced. Exact dimen-
sional data and more downstream profiles than available in any published experiment

are necessary to determine the downstream development of the proposed scaling laws.
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Chapter 10

Summary and Conclusions

10.1 Thesis Summary

A new theory has been proposed for the turbulent natural convection boundary layer
next to a heated, vertical surface. The scaling laws have been derived by insisting
that properly scaled profiles reduce to similarity solutions of the reduced inner and
outer equations in the limit of infinite local Nusselt or H-number. The outer scaling
functions could only be determined in terms of the inner by matching the inner and
outer profiles at finite Nusselt numbers.

It was possible to establish limits on the similarity solution and its asymptotic
behavior by considering how the turbulence energy dissipation varies with turbulence
Reynolds number. The earlier local similarity theory of George and Capp was re-
covered as the infinite H-number (or Nusselt number) limit. For finite values of the
turbulence Reynolds number, the equations — and thus the local inner and outer
scales — retain the x-dependence characteristic of laboratory experiments.

It is concluded: The proposed scaling laws for the inner and outer part of the
turbulent natural convection boundary layer should collapse any profiles within the
fully turbulent regime. Researchers are encouraged to re-examine their TNCBL data

under the aspect of this new theory.
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10.2 Suggestions for Future Work

With the introduction of this new theory for the natural convection turbulent bound-
ary layer, an immense scope could open up for future work. Possibilities for experi-
mental, numerical and further analytical investigation along the lines of the proposed
similarity analysis exist.

First of all, the theory should be extended to higher order moments (Reynolds’
stress equation, turbulence kinetic energy, mean square temperature fluctuations,
third order moments, etc.). The consistency with existing experimental data should
be explored to its full extent, which can only be done with tabulated data provided
by experimentalists. Its implications on the statistical description of turbulence, two-
point equations and related buoyant or boundary layer flows await investigation.

Judging from the state of the published experimental results, there definitely is a
need for data on the downstream development of characteristical quantities (scaling
laws) up to a high range of Grashof numbers without having to account for variable
property effects. This calls for larger experimental setups.

The transformed governing equations could be solved numerically (closure model?)
to learn more about the validity of this theory. Since they contain an implicit z-
dependence, the proposed scaling laws may be helpful in turbulence modeling, where

they could provide more accurate wall functions.
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The Figures
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Figure 1: Schematic of the turbulent natural convection boundary layer next to heated
vertical surfaces.



Laminar and turbulent heat transfer
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Figure 2: Regimes of laminar, transitional and turbulent heat transfer (includes re-
compiled experimental data for water (Pr = 4...8 from Fujii et al. [20]).
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Theoretical Heat Transfer Predictions
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Figure 3: Comparison of theoretical and numerical local heat transfer predictions,
Nuy vs. Gry, for air (Pr = 0.72), including experimental heat transfer data from
Tsuji and Nagano 1988 [64] for two different wall temperatures in the turbulent
regime. 62
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Figure 4: Comparison of theoretical average heat transfer predictions, Nuy vs. Grp.

Plotted are graphs for Pr = 0.72, Pr = 100 and Pr = 0.01.
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Figure 5: Temperature dependence of fluid properties in air (taken from tables in
ref. [33]) and water (calculated from formulas for physical properties given in ref. [20])
under atmospheric conditions.
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Figure 7: Turbulent natural convection in a vertical channel.
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Mean temperature data (Smith 1972)
plotted in inner variables of George & Capp
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Figure 8: Mean temperature data of Smith 1972 [59] plotted in inner variables of
George and Capp 1979 [26].
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Mean temperature data (Smith 1972)
plotted in inner variables of George & Capp
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Figure 9: Mean temperature data of Smith 1972 [59] plotted in
George and Capp 1979 [26] on a log-linear plot.
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Mean temperature data (Smith 1972)

plotted in inner variables
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Figure 10: Mean temperature data of Smith 1972 [59] plotted in inner variables from
new theory.
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Mean temperature data (Smith 1972)

plotted in inner variables
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Figure 11: Mean temperature data of Smith 1972 [59] plotted in inner variables from
new theory on a log-linear plot.
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Comparison of mean temperature data
in inner variables
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Figure 12: Comparison of mean temperature profiles in inner variables on a linear-
linear plot (replotted from Tsuji and Nagano 1988 [64]).
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Comparison of mean temperature data
in inner variables
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Figure 13: Comparison of mean temperature profiles in inner variables on a log-linear

plot (replotted from Tsuji and Nagano 1988 [64]).
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Mean velocity data (Cheesewright 1968)

plotted in inner variables of George & Capp
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Figure 14: Mean velocity data of Cheesewright 1968 [11] plotted in inner variables of
George and Capp 1979 [26].
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Mean velocity data (Cheesewright 1968)
plotted in inner variables of George & Capp
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Figure 15: Mean velocity data of Cheesewright 1968 [11] plotted in inner variables of
George and Capp 1979 [26] on a log-linear plot.
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Mean velocity data (Cheesewright 1968)

plotted in inner variables
0.40 \ ‘ ! ‘ ‘

0.30 | o0 H¥=52x10" i
o o 12

2 0.20 :
)
0.10 ¢ 8
0.00 e e
0.0 10.0 20.0 30.0 40.0 50.0
yim

Figure 16: Mean velocity data of Cheesewright 1968 [11] plotted in inner variables
from new theory.
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Mean velocity data (Cheesewright 1968)
plotted in inner variables
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Figure 17: Mean velocity data of Cheesewright 1968 [11] plotted in inner variables
from new theory on a log-linear plot.
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Mean velocity data (Smith 1972)

plotted in inner variables of George and Capp
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Figure 18: Mean velocity data of Smith 1972 plotted in inner variables of George and
Capp 1979 [26].
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Mean velocity data (Smith 1972)

plotted in inner variables of George and Capp
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Figure 19: Mean velocity data of Smith 1972 plotted in inner variables of George and
Capp 1979 [26] on a log-linear plot.
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Mean velocity data (Smith 1972)

plotted in inner variables
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Figure 20: Mean velocity data of Smith 1972 [59] plotted in inner variables from new
theory.
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Mean velocity data (Smith 1972)

plotted in inner variables
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Figure 21: Mean velocity data of Smith 1972 [59] plotted in inner variables from new
theory on a log-linear plot.
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Mean velocity data (Tsuji & Nagano 1989)

plotted in outer variables
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Figure 22: Mean velocity data from Tsuji and Nagano 1989 [65] plotted in (asymp-
totic) outer variables from new theory.
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Appendix A

Derivation of the Governing

Equations

A brief derivation of the differential equations governing the fully developed turbulent
natural convection boundary layer is given in this section. A more general approach
to the physical phenomenon natural convection is considered and the approximations

and simplifications necessary in order to obtain this set of equations are examined.

We know that the density of gases and liquids depends on temperature, p = p(7),
generally decreasing with increasing temperature due to fluid expansion (dp/dT < 0).
The necessary condition for equilibrium of a fluid is well known to be pf = Vp. Taking

the curl of both sides leads to
Vx(pf)=Vpxf+pVxf=0 |, (A1)

where the body force per unit mass f has to represent a conservative field (i.e. it has
a potential ¥ and can be written as f = —V) and the gradient of the density Vp
has to be parallel to the vector of body forces f (or zero) to satisfy this equation. For

a semi-infinite vertical surface with a surface temperature 7T, immersed in a fluid of
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infinite extent and temperature T, (with T\, # T, ) the fluid adjacent to the wall
is heated (or cooled) through conduction heat transfer. The temperature gradient
and the density gradient at the wall are now perpendicular to the surface. With the
bodyforce per unit mass being the acceleration of gravity, clearly, the first condition
for mechanical equilibrium in equation (A.l) is violated and there has to be fluid
movement, i.e. the Natural Convection Boundary Layer Flow develops! (Note that
the first condition is always satisfied for the case of a heated (or cooled) horizontal
plate, therefore thermal stability considerations come into play. Note also that a
stratified temperature at infinite distance from the plate (T, = T (2)) has not been

ruled out.)

A.1 Continuity, Momentum and Heat Diffusion

A basic set of equations governing the motion of a fluid (c.f. e.g. [1], [4], [60]) is given

by the continuity equation

Dp Ju;
— =0 A2
Cauchy’s equation of motion
Dui 8
= i Ty Al
Py =Pt (A.3)

J

and a form of the energy equation

De . 6u2 8qi
th N Tﬂafﬂj 8732 ’

(A4)

representing continuum mechanics’ analogon of the first law of thermodynamics. De-
composing the stress tensor 7;; into hydrostatic and deviatoric parts —pd;; and F;;

and with equation (A.2) we can rewrite the energy equation as

De pDp dg;
po=blie JE
Dt p Dt dz;
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where the dissipation is defined as

_ Ou

o
&rj

PZ] . (1A.6)
Employing a linear relation between deviatoric stress and rate of strain (e.g. Newto-
nian Fluid, certain non-Newtonian fluids show linear behaviour, too) and between
heat flux and change in temperature (Fourier’s law) the stress tensor within Stokes’

hypothesis becomes

2 0u Oou;  Ou;
T = —pbi; + Pij = —pbi; + 1 (—ga—xz&j + (8,1:‘ + ax])) , (A7)
7 7
and the heat flux vector becomes
T
qi = 42 (A.8)
851;2-

Equations (A.2), (A.3) and (A.5), together with the definitions of the stress tensor
and the heat flux vector and the two equations of state p = p(p,T') and e = e(p,T')
provide a closed basic set of equations to solve for unknown quantities in a laminar
flowfield (u;, p,p,e,T).

We further assume that there are no sources of heat within the fluid (which
could arise e.g. from chemical reactions) and neglect heating through viscous
dissipation @, since the expected velocities are small and temperature differences are
not (c.f. Gebhardt [21]). Note that the loss of momentum through viscous dissipation
plays an important role in turbulent flow and cannot be ignored in the equations of
motion!

We will now turn to the question whether the natural convection boundary layer
flow can be treated as being incompressible, meaning that the continuity equa-
tion (A.2) can be reduced to the statement that the velocity field is solenoidal

(V-4 =0). We choose the density p and the entropy per unit mass s as the two
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independent parameters of state and write for the rate of change of pressure experi-

enced by a material element

Dp _ (9p) Dy (9p) Ds
Dt_(ap)sDt—l_(@s , Dt (4.9)

With the definition of the speed of sound

a’ = (g—i)s (A.10)

the change in density of a material element is

De_1D0p 1 <@) Ds (A.11)

b= wni~a\os) i

The fluid behaves as if it were incompressible, if the righthand side vanishes, so that
Dp/Dt = 0. The second term on the righthand side can be decomposed into entropy
transfer and irreversible entropy production. The variation of density due to inter-
nal dissipative heating is small (c.f. Gebhardt [21]), but for very large temperature
differences (T,, — Tw,), the entropy transfer part may not be negligible. In this case,
the boundary layer flow cannot be treated as incompressible. In estimating Dp/ Dt of
the first term on the righthand side we lose little generality by assuming the flow to
be isentropic. Rewriting it with the aid of equation (A.3) without the viscous terms
(equivalent to Euler’s equation) and applying a simple order of magnitude analysis
(c.f. Batchelor [4], Spurk [60]) leads to the following three conditions for the vanishing
of the first term in equation (A.11)

= Ust oy A12

=2 < . (A.12)
L

<l (A.13)
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and
n?L?

<1, (A.14)

where M is the Mach number, Us is a characteristic velocity, n is a measure of the
dominant frequency, L is a characteristic length and ¢ is the acceleration of gravity.
All three conditions are satisfied in the case of the natural convection boundary layer
flow and the changes in density of a material element due to pressure variations can
be neglected. The fluid will thus behave as if it were incompressible, provided the
entropy transfer is small. Condition (A.13) is not satisfied for large lengthscales L ~
a*/g as they might occur in the atmosphere, e.g. natural convection flow phenomena
exceeding a few hundred meters in depth cannot be treated incompressible.

With the above simplifications, the continuity equation and the Navier-Stokes

equations (= Cauchy’s equation (A.3) with constitutive law (A.7)) can be written as

aui
O2: 0 (A.15)
and
Du; _ dp 0 Ou;
p Dt N pr 81:2 8:1:]- (/La.ﬂ]) ‘ (A16)

In the case of external heating , the approximation Dp/Dt = 0 is still good for liquids
and with de = ¢ dT' the energy equation (A.5) reduces to

DT 0 oT
pc r = ir, (ka$j) ) (A.17)

This is not always true for gases in the presence of external heating and the energy
equation has to be treated differently. Differentiating the thermal equation of state
p = p(p,T) for an ideal gas leads to

Dp p DT
Dt RI*Dt

(A.18)
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since we neglect density changes due to pressure changes and therefore have an isobaric

process. With de = ¢, dT" and ¢, = R + ¢, , the energy equation (A.5) then assumes

DT 0 aT
P = i, (ka$j) : (A.19)

the form

The latter will be used from now on, valid for both gases and liquids. Equations
(A.15), (A.16) and (A.19) are a reduced set describing both laminar and turbulent

flow, since no specification has been made so far.

We are from now on considering turbulent flow and decompose the instantaneous

flow quantities, denoted by a tilde, into a mean and a fluctuating part:

U+u
uw = U+u = V4o (A.20)
W+w
T = T+t (A.21)
p = P+p = PotP+p (A.22)
p = ptp (A.23)

P, is the local static pressure minus the hydrostatic pressure. The hydrostatic pres-
sure distribution P,, will appear implicitly in the buoyancy term, as shown below.
Assuming the flow to be stationary in the mean, i.e. the average values of flow
quantities such as velocity and temperature are independent of time, the set of gov-

erning equations becomes:

ou; _
5 =0 (A.24)

ow .. ap 9 [ o _
Pl = Plim gt e (ua%) (A.25)

T 9 (9T _
pep; 95, ~ B, (kaxj) (A.26)
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We are left with the question of how to account for the temperature dependence
of density. Knowing that @; = 0 outside the boundary layer, we find the gradient of
the hydrostatic pressure distribution from equation (A.25)

Jdp 0Py .
(ax») = o, el (A.27)
v/ y—oo e

With ¢ being the acceleration of gravity and pointing in the negative x-direction, the

vector of bodyforces becomes

fi=19 0 : (A.28)

We can now substitute expression (A.27) in equation (A.25) to get

du; 9, 0 o
pujm— =5 (Pt p)+ - (“ar-
7

Zj 8,752 6:1:]-

) o) f . (A29)

Within the Boussinesq approximation (c.f. [8], [33]) the density is assumed to be
constant everywhere except in the bodyforce term, also referred to as the “buoyancy

term”. The Navier-Stokes equations can then be written as

L Ou 10 ’ 0 du; P — P, .
(P.+p) + s <Va$j) + . fi . (A.30)

Gt
oy Poo O

Note: The Boussinesq approximation includes incompressibility, i.e. it is more restric-
tive. Nevertheless it was thought to be important to show that the simplifications of
incompressibility are valid even without such an assumption.

Expanding p = p(7') in a Taylor series
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— pm+g—§(T—Tm)+%%<T—Tm)2—l—...
= =P = gg(T—Tm)+%%(T—Tm)2+... (A.31)

and with the definition of the volumetric coefficient of thermal expansion

| 1qop N
’ :[ p(aT)L ’ .

we find the density difference in the above buoyancy term to be

P — P R _pmﬁ(f - TOO) ) (A33)

where the higher order terms have been neglected. This linearization is not a good
approximation for large temperature differences AT = (T'— T.,), because the higher

order terms become more important with higher AT. The Navier-Stokes equations

(A.25) now read

g
YOz, Poo O

L e () ion o

Applying all the above simplifications, substituting the vector of bodyforces and the
decompositions for the instantaneous values and averaging (time, space or ensemble

average, the operations of differentiation and averaging commute) yields

ggj = 0 (i.e. g: ~ o) (A.35)

UZ—U _ —p%oaap - aij (gU ——) F BT —T)6n  (A36)

PO ns

Using the summation convention for the silent index j, simplifying with W = 0

and homogeneity in the z-direction (9/0z = 0, as in centerline measurements
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in experiments, provided the aspect ratio plate width vs. boundary layer thickness
is large enough), we finally obtain the governing equations for the fully developed

turbulent natural convection boundary layer:

ou oV _
% + a—y = 0 (A.38)
oU oU 1 0P, 0 Io)/—
i v _Z I
U@:c+vay p Ox +8$ (V&r u)
9 l/a—U —uv | +gB8(T — Tw) (A.39)
dy \ Jy
51% oV 1 0P, 0 v
0 oV —
R I A
+ 77 (1/ a9 v ) (A.40)
0 . a .
0 = %(—wu) + 8_3/(_ v) (A.A41)
oT oT 0 T 0 or _

The density p., is denoted just as p for convenience. An overbar is used to denote
the average of the two corresponding fluctuating quantities. It is obvious that the
equations of momentum and energy are coupled, as opposed to the forced convection
boundary layer. Motion is present only because of the heat transfer from the surface
and has therefore no independent existence. As a consequence of this peculiarity,
e.g. the principle of superposition cannot be utilized to develop analytical solutions.
Equation (A.41) only describes how the correlations of wu and wWo are related and

can be omitted.
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A.2 Turbulence Kinetic Energy and Temperature
Fluctuations Transport

Turbulence extracts energy from the mean flow at large scales, but this gain is ap-
proximately balanced by the loss of energy through viscous dissipation at very small
scales. One way of deriving a transport equation for the turbulent kinetic energy
is subtracting the kinetic energy of the mean flow from the instantaneous kinetic
energy. The kinetic energy of the mean flow can be obtained by multiplying the

equation governing mean momentum (A.36) by U,

U, U =U,— —) + Uzgﬂ(T — Too)éﬂ , (A43)
p

Ui _ . 9 (L
]8,1;j 8.17]'

where the stress tensor 7;; is defined as

8xj + 812

— puiu; . (A.44)

ou; oU;
Ti; = —Pubij + 2pE;; — puuy; = —Pooi; + ( ‘7)

By splitting the stress term in two parts with the chain rule and using symmetry, this

can be rewritten as:

0 1 0 Tij Tij
i— | =0 U; ) = — | —U; __Ei' i T—Too 52 . A4

Substituting the stress tensor into equation (A.45) yields an equation for the energy

of the mean flow

0 /1 0 P,
U.— ( =UU; = — |[——U; 20U E;; — Usugus;
YOz, <2 ) Ox; l p’ e ! titli

— Wwhi By +wugky; + UgB(1 —T)én, (A46)

where the term on the left-hand side is the rate of change of mean kinetic energy due to

convection, the first three terms on the right-hand side are transport terms, pressure
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work, transport of mean flow energy by viscous stresses and turbulent motion, respec-
tively. The fourth term is the viscous dissipation, the fifth is the turbulent energy
production and the last a buoyancy source term (generation of mean kinetic energy
by buoyancy), while the deformation work by pressure (P, F;;) vanishes because of
incompressibility. However, this equation does not contain any new information, since
it was found through mere manipulation of the momentum equation. Multiplying the

Navier—Stokes equations (governing the instantaneous motion, (A.34)) by @, yields

0 1 19 N P |
u]a—x] <§u2u2) = _UZ;aZEZ (P* +p) + Uza—r] (27/62]) + uzgﬁ(T - TOO)521 5 (A47)

where the strain rate tensor is defined as

. L fou; du\ 10U 09U 1 (0w | Ouy\ )
P2 (8;1:]- " 8,132-) 2 (axj " &m) T3 (al'j i &u) =Bite; - (A48

Averaging equation (A.47) and subtracting equation (A.46) we finally obtain the

equation governing the mean kinetic energy of the velocity fluctuations w;u; :

o [1__ 9] I 1
Ujé?—x]- <§u2u2) = 8—.1] —;uj'p + Zl/uiei]‘ — Euzuzuj
— 2ve€; —wu By 4+ gBuitén . (A.49)

On the left-hand side we have convection of the turbulent kinetic energy (the rate of
change following the mean motion), the three transport terms on the right-hand side
are pressure-gradient work, transport of turbulent kinetic energy by viscous stresses
and by velocity fluctuations, the fourth term is the viscous disspation of turbulent
kinetic energy. The fifth term is the turbulence production and the sixth term is the
buoyant production. The pressure strain-rate is zero in incompressible flow. Note
that the turbulence production occurs in both equations (A.46) and (A.49), but with
different signs. Since w;u; is almost always negative if 9U;/dx; > 0, this term serves

to exchange kinetic energy between the mean flow and the turbulence, adding to
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the latter. Temperature is obviously not a passive scalar in turbulent natural convec-
tion, but an active contaminent. Temperature fluctuations cause density fluctuations,
which give rise to a fluctuating body force — f;3t6;; that contributes to the turbulence
kinetic energy.

Another way to derive the turbulence kinetic energy equation is via the Reynolds’
stress equation: An equation governing the fluctuating velocities can be obtained by
subtracting the momentum equation governing the mean motion (eqn. (A.36)) from
the Navier-Stokes equation governing the instantaneous motion (eqn. (A.34))

, S — (2uei) — |ui— —ui— | — ui——t Btsn
Y0z pOz; + Oz (2vei;) (u] Oz o Oz o Oz T 9Pt

(A.50)

where the viscous terms were written with the strain rate tensor e;; defined in equation

(A.48). Multiplying by uj and averaging leads to

8u2- 1 8p 0 . 8u2 UZ N
Ujukat—rj = —;uk% -+ uka—r] (2vei;) — uku]a—% — ukujat—r]‘ + gBugtdyy . (A51)

Rewriting this equation with reversed indeces ¢ and k, adding both equations and

rearranging the resulting pressure and viscous terms leads to an equation govern-

ing u;u;:
0 o |1, o e
U]’— (ukuz) = — |- (uip&w' + ukp@']') — U uRu; + 2v (ukei]’ + uiekj)
Oz; dz; | p
p \ Oz Oy ]axj k ]axj
—  dvejer + 98 (urtdn + uitdrr) . (A.52)

This is the so-called “Reynolds’ stress equation”. Contracting the free indeces ¢ and
k again yields the turbulent kinetic energy equation (A.49).
An equation governing the transport of the mean square temperature fluctuations

can be derived in a very similar fashion, either by subtracting the mean energy equa-
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tion (A.37) times the mean temperature T' from the averaged product of instantaneous
energy equation (A.26) and instantaneous temperature T or by subtracting the mean
energy equation (A.37) from the instantaneous energy equation (A.26), multiplying
with the fluctuating temperature ¢ and averaging. The result in both cases will be

9 1\ 0 [ 1— 8 (1-N] —or ot ot
R (et S P (22| — _
Uige, <2t> dz; l U <2t )] e T %owa; - A

The terms occurring in the temperature fluctuations equations can be interpreted in
a similar fashion as for the turbulent kinetic energy or Reynolds’ stress equation: We
can identify a convection term on the left-hand side, transport terms, production and

dissipation on the right-hand side.
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Appendix B

Scaling of the Governing

Equations

A standard order of magnitude analysis (c.f. e.g. [62, 52, 44, 60, 56]) is applied to the
governing equations in order to obtain properly reduced sets of equations describing

the inner and outer flow regions of the turbulent natural convection boundary layer.

B.1 The “Outer” Set of Equations

We assume that the effects of natural convection are confined to a thin layer of fluid
adjacent to the heated surface, so that Prandtl’s boundary layer approximations (c.f.
Prandtl [52] , Schlichting [56]) apply. Changes of relevant quantities in the streamwise
direction are small compared to changes in the cross-stream direction, since the wall-
bounded turbulent shear flow considered here evolves slowly in the x-direction. This
can be written as

0 1 0 1

"I <oy~ (B1)

L and ¢ are a streamwise and a cross-stream length scale which are not defined further

at this point. The mean streamwise velocity, the mean temperature, the fluctuating
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velocities and the fluctuating temperature are scaled with

U ~ Us, (B.2)

T ~ Ts, | (B.3)

—u?, =02, v~ u,? (B.4)
—ut, —vt ~ wu.t, (B.5)

respectively. (Note: Different symbols are used to scale the Reynolds’ stress —uwv and
the turbulent heat flux —vt in the main part of this work. u, and ¢, and later u; and
t; are only used in this appendix for all the turbulence quantities for convenience.)

From the continuity equation (3.1) it is then found:

)
V ~ USOI (B6)

We will now first look at equation (3.3), which governs the mean momentum in

the cross-stream direction:

i (B.7)

U—+4+V—— 1/%—’ v— —v?

A% v _ 10P N ooV a [ dv
Jz oy  pdy Oz e dy

Expressing each term in the scales defined above, we can identify their orders of

magnitude as follows:

1) 1) 1) Uy? 1 Uy?
2 2 [ o)
Uso Iz + Uso 1z ~ 7+ VLSO_[:B + [ + VLSO(S_[ + S

(B.8)

The order of magnitude of the pressure term is unknown so far, we will now focus
on evaluating it. Multiplying equation (B.8) by §/Us,* leads to a more practical,

nondimensionalized form




where Res is defined by
Us,6

14

R€5 =

(B.10)

The second term on the right-hand side in equation (B.9) — which is representing
equation (B.7) — is small compared to the fourth (by two orders of magnitude), the
third term is small compared to the fifth (by one order of magnitude). As long as
(6/L)* — 0 faster than (u,/Us,)?, both terms on the left-hand side are also negligible
compared to d(—v2)/dy. If the Reynolds number Res is large enough, the remaining

viscous term is also negligible relative to d(—v2)/dy. We are thus imposing the
§\* (Us.\?

— 0 B.11

(L) (uo) -~ ( )

1 (6 /Uso\? .
R—%(I) (u ) 0 (B.12)

in the limit as 6/L — 0 (or 6 < L). In order to balance the equation, there must

conditions

and

be another term of the order of magnitude of d(—v2)/dy: Inspection of equations
(B.7) and (B.9) leads to the conclusion that this has to be the pressure term. The

simplified y-momentum equation — to first order — then reads:

o= L%, 0 (v?) (B.13)

Y

Let us briefly consider the more general case where the gradient of the hydrostatic
part of the mean pressure, d P, /0z;, was not written as a bodyforce. For any distri-
bution of static pressure, equation (B.13) — now simply with P = P, + P, instead

of P, — can easily be integrated from oo to y to yield:
P =P, — pov? . (B.14)

For turbulent shear flows, this expression is justifiable as follows: It is assumed that

the pressure inside the thin shear shear layer is largely accounted for by the pressure
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field outside of it (to first order). Because of the presence of the fluctuating term, the
pressure inside the boundary layer is seen to be less than outside. This slight cross-
stream pressure gradient is responsible for the entrainment of ambient fluid. Note
that in the case of forced convection, the mean square of the cross-stream velocity
fluctuation at infinite distance from the wall, v, has to be included if the free stream
is turbulent!

Returning to our specific problem (eqns.(B.7,B.13)), the pressure distribution
(B.14) reduces to P, = —p.v? and its derivative with respect to & can be written as:

1 0P, 0 /—
e = 3z ()

(B.15)

We will now scale the equation for the streamwise mean momentum, equation

(3.2), written with (B.15) for the pressure term:

ou ou a9 ( U ,— — a [ oU
AR Vot S o B g, = _
U t +V t (1/ (u )) —I—ay (1/ 3y uv) +g8(T-Tx) . (B.16)

Expressing each term in the defined scales and nondimensionalizing the equation by

multiplying by L/Us,?, we obtain:

1 ) Uy \ 2 1 /L u, \2 /L
141~ — (2 N (2 V(242 . (B
* Res (L)+<Uso> +R65<5)+<USO) (5>+ (B.17)

The magnitude of the buoyancy term (denoted by “?”) cannot be determined at

this stage. The first term on the right-hand side is small compared to the third, the
second term is small compared to the fourth. With Res being sufficiently large, we
can make the viscous terms as small as required. In order to have “turbulence”, a

fluctuating term must stay in the equation. We are requiring

() (G~ (519

i.e. this nondimensional group must remain bounded as 6/L — 0. The reduced
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x-momentum equation — to first order — can now be written as:

ou ou o9, __
U tVay =3 T +9AT ~T) (B.19)

Eventually we consider the scaling of the energy equation (3.4):

oT orT 0 or _ 0 or _
U% + Va_y =5 (a% — ut) 4+ — (a— — vt) . (B.20)

Substituting the scaling quantities and multiplying by L/Us,Ts, we get the following

orders of magnitude:

o~ (D) (@) G E) () () ma

where Peg is the Péclét number defined as:

Us,0

(o]

P€5 = (B22)

Again, the first term on the right-hand side in equation (B.21) is small compared to
the third, the second term is small compared to the fourth. Assuming Pe; is large
enough, we can make the conduction terms as small as desired. For a fluctuating

term to stay in the energy equation, we require

(72) () (5) ~ (B.23)

as 6/L — 0. The reduced energy equation — to first order — then reads:

ar AT 9, _ _

Equations (B.19) and (B.24) together with the continuity equation (3.1) are referred

to as the “outer” set of equations.
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B.2 The “Inner” Set of Equations

To include the wall effects (c.f. 3.2), we have to rescale the governing equations
to retain at least one viscous and one conduction term. This is only possible, if
the Reynolds and the Péclét number, based on “inner” scales, cannot become large.

Therefore we require

_ Usim
14

Re,, ~1 (B.25)

for the momentum equations (3.2, 3.3) and

Pe,, = 51T (B.26)

«

for the energy equation (3.4). This is always true for inner length scales n and 7y on

the order of magnitude of:

14
~ B.27
T (B.27)
and
(84
~ B.28
el (B.28)

Since n,nr < 6, the boundary layer approximations (B.1) hold also for the inner
layer, of course:
0 1 0 11

——~ e — o~ B.29

and scales for the mean streamwise velocity, the mean temperature, the fluctuating

velocities and the fluctuating temperature are:

U ~ Us; (B.30)

T ~ Ts; (B.31)

—u_z, —v_2, —uv o~ ug’ ; (B.32)
—ut,—vt ~ wuit; (B.33)
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respectively. The continuity equation (3.1) gives the cross-stream velocity scale

Vo~ USZ-% (B.34)
for the momentum equations and
Vo~ USZ-%T (B.35)

for the energy equation.
Expressing the terms in the y-momentum equation (3.3, B.7) in the new “inner”
scales and multiplying by /Us;* leads to a nondimensionalized representation with

the following orders of magnitude:

B~ @G Q@) ew

Proceeding along an analogous line of arguments as for the “outer” set of equations

(c.f. B.1), we establish, that — again — the pressure term is the only term which can
balance d(—v?)/dy, the first and last terms on the right-hand side of equation (B.36).

We obtain exactly the same reduced y-momentum equation:

0 — 1@P*_|_ 0 <§)

- : B.37
P Oy Oy ( )

which is an approximation to first order and contains the condition

(B o =

in the limit as /L — 0. The derivative of mean pressure with respect to x can again

be written as in equation (B.15).

Substituting in the equation for the streamwise mean momentum, equation (3.2,
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B.16), and multiplying by 1/Us;*, we yield:

D) - @G @) o

Scaled this way, the mean convection terms on the left-hand side are small compared

to the last three terms on the right-hand side, which are a viscous term, a Reynolds’

stress term and the buoyancy term. The z-momentum equation — to first order —

reduces to
0= 9 l/a—U —uv | +98(T - Tsw) (B.40)
dy \ 9y
with the requirement
w \ 2
) o~1 . B.41
() (B1)

Finally we examine the energy equation, equation (3.4, B.20). Expressing it in
terms of the “inner” scaling quantities and nondimensionalizing it through multipli-

cation by ny/UsiTs; we obtain the orders of magnitude as:

)~ R E @) - ne

In this case, too, we can neglect the mean convection terms, which are one order of

magnitude less than the second viscous term. A fluctuating term stays in the equation

The energy equation — to first order — can then be written as:

0 or _
=~ |a— — 77T ) B.44
0 dy (aa'y U) (B.44)

with the condition

Equations (B.40) and (B.44) together with the continuity equation (3.1) are referred

to as the “inner” set of equations.
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