
Abstract

In this master thesis an investigation of a buoyancy-driven boundary layer has
been done. This kind of ow is very hard to predict numerically, because of lim-
itations of the turbulence models used, which in turn is causedby the lack of of
accurate and detailed measurements. An experiment is proposed to provide new
data on the buoyancy-driven turbulent boundary layer, where particular attention
is given to the near-wall region. This experiment will both work as a validation
for numerical codes as well as shed new light on the physics behind the phenom-
ena. The experimental rig will be built up at the division of Thermo and Fluid
Dynamics at Chalmers University of Technology.

The �rst task of the project was to make a literature review of recent experi-
mental work and of the underlying theories for buoyancy-driven boundary layers.
The review of experimental work con�rmed that the lack of detailed experimen-
tal data for turbulent natural convection ows at high Grashof numbers, and
that the proposed experimental methodology for simultaneousmeasurements of
velocity and temperature is appropriate. An investigation ofthe inlet ow into
the proposed experimental facility showed large deviations from the desired inlet
conditions of axisymmetric radial inow. The recommendation was therefore to
redesign the inlet and improve the contraction in order to satisfy the requirement
on the inlet ow. The second task was to investigate the turbulent structures
in this ow. To do this, data from a direct numerical simulation (DNS) was
used. Two techniques were used for the investigation, the �rst toidentify vortex
structures based on a modi�cation of pressure minimum de�nition. The second
technique used was based on proper orthogonal decomposition (POD). A variant
called "snapshot POD" was used here.

From the analysis of the coherent structures it was found that,so called horse-
shoe vortices exist in the ow. From the "snapshot POD" it was found that the
�rst modes only contained about 7-9 % of the energy. This is lowcompared to
what has been reported for other ow cases. The most probable explanations are
that either too few samples were used, or that the cyclic boundary conditions in
the simulations a�ected the result. In the latter case, POD would transform to
Fourier decomposition, in which case many modes are necessary tocomprise the
�eld.
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Nomenclature

Latin

A Matrix containing all b l [-]
A Element in the coe�cient matrix [-]
bk Coe�cient of POD mode k [-]
b l POD coe�cient vector [-]
cp Speci�c heat at constant pressure [JkgK ]
C Correlation matrix [-]
D Depth of computational geometry [-]
f Function of [-]
F0 Kinematic wall heat ux [ mK

s ]
g Gravitational force [ms2 ]
H Height of computational geometry [-]
Hc Height of contraction [m]
H1 Height of contraction inlet [m]
H2 Height of contraction outlet [m]
k Thermal conductivity [ W

mK ]
L Streamwise length scale [m]
L c Length of contraction [m]
m Number of velocity components [-]
n Spanwise spatial position [-]
N Total number of realizations [-]
o Streamwise spatial position [-]
p Fluctuating pressure [Pa]
P Mean pressure [Pa]
P? Mean static pressure minus hydrodynamic pressure [Pa]
qw Wall heat ux [ W

m2 ]
r Radial coordinate [m]
r c Radial coordinate for contraction [m]
rm Matching point for contraction [m]
R Two-point correlation function [m2

s2 ]
S Strain rate tensor [1s ]
t Time [s]
T Stress tensor [1s ]
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viii

u? =
q

� w
� Friction velocity [ m

s ]

v Velocity vector [m
s ]

V Volume [m3]
vr Radial uctuating velocity [ m

s ]
vx Streamwise uctuating velocity [ms ]
vy Cross-stream uctuating velocity [ms ]
vz Spanwise uctuating velocity [ms ]
Vr Mean radial velocity [ms ]
Vx Mean streamwise velocity [ms ]
Vy Mean cross-stream velocity [ms ]
Vz Mean spanwise velocity [ms ]
W Width of computational geometry [-]
x Space vector [m]
x Streamwise coordinate [m]
y Spanwise coordinate [m]

Greek symbols

� Thermal di�usivity [ m2

s ]

� =
�
� 1

�

�
@~�
@~�

�

p= contant

�

1

Thermal expansion coe�cient [ 1
K ]

� Outer cross-stream length scale [m]
� ij Kronecker delta [-]
� P Pressure di�erence [Pa]
� Inner cross-stream length scale [m]
� t Inner thermal cross-stream length scale [m]
� Azimuthal coordinate [rad]
� Fluctuating temperature [K]
� Mean temperature [K]
� Eigenvalue [-]
� Dynamic viscosity [Ns

m2 ]
� Kinematic viscosity [m

2

s ]
� Mean density [kg

m3 ]
� 0 Fluctuating density [ kg

m3 ]
� w Wall shear stress [Nm2 ]
� Deterministic vector �eld [-]
� Basis modes [-]
� Dissipation function [ N

m2s ]
	 Vector of basis modes [-]

 Region in space [-]

 Rotation tensor [ 1

s ]
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Non-dimensional parameters

Gr = g� (� w � �) L 3

� 2 The Grashof number
H = Gr � Nu � P r2 The "H-number"
Nu = hL

k The Nusselt number
Pe = Re� Pr The Peclet number
Pr = �

� The Prandtl number
Ra = Pr � Gr The Rayleigh number
Re = V L

� The Reynolds number

Overlines

� Averaged quantities
e Instantaneous quantities
b Discrete quantities

Subscripts

i,j,k Indices for tensor notation
k,l Indices of realization number
Si Scaling functions for inner variables
So Scaling functions for outer variables
w Evaluated at the wall
x Based on a vertical length scale
1 Evaluated at in�nite distance from the wall

Superscripts

� Complex conjugate
' Another position
T Transpose

Relation symbols

� "on the order of magnitude of"
� "de�ned as" (equivalent to)
�= "approximately equal to"
/ "proportional to"



x

Abbreviations

DNS Direct Numerical Simulation
HWA Hot-Wire Anemometry
HVAC Heat, Ventilation and Air Condition
LDA Laser Doppler Anemometry
LES Large Eddy Simulation
PIV Particle Image Velocimetry
POD Proper Orthogonal Decomposition
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Chapter 1

Introduction

1.1 Background

Buoyancy-driven ows are important in many areas of application. They represent
a fundamental problem in heat transfer research and occurs in many engineering
situations. Examples of engineering applications where buoyancy-driven ows are
present and play an important role are cooling of nuclear power plants, cooling of
electronic devices, home heating and copper re�ning. They are also an important
feature in the atmosphere, e.g. in the process of cloud formation and creation of
tornados.

Buoyancy-driven ows appear when there is a density gradient. This density
gradient is normally caused by chemical reactions or temperature di�erences.
Buoyancy-driven ows can be either pure natural convectionor some combina-
tion with forced convection, usually called mixed convection. The present work is
restricted to buoyancy-driven boundary layer ows. Studies of buoyancy-driven
boundary layers have been theoretical, experimental and numerical based on com-
puter simulations. The investigations many times show di�erentresults. In chap-
ter 2 a literature review is presented and it will be demonstrated that the inves-
tigations show di�erent results.

The division of Thermo and Fluid Dynamics, Chalmers University of Technology
has an on-going project that focus on Large Eddy Simulation (LES) of buoyancy
a�ected ows. The proposed experimental set-up will work as a validation for
these LES computations. The proposed experimental set-up is a modi�cation of
the one described in Persson and Karlsson (1996). More speci�cations, including
a schematic picture, for the experimental set-up can be found in appendix B.
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2 CHAPTER 1. INTRODUCTION

1.2 Objectives and methods

The purpose of the present work was to perform basic measurementsof the ow for
the proposed experimental set-up. Initial measurements of theinlet ows showed,
however, a velocity variation around the perimeter of about� 10%. Such a large
variation was considered unacceptable (the axisymmetry condition was not sat-
is�ed) and the inlet section had to be redesigned. Measurement ofthe velocity
for the initial contraction, together with drawing of a modi�ed version of a new
contraction, can be found in appendix C. The redesign and manufacturing of the
new inlet section was time consuming and made further measurement impossible
within the time frame of this master thesis. The focus of the workwas therefore
shifted towards an general investigation of this kind of ows, as a preparation for
a future experiment. The �rst task was to perform a literature review of pre-
vious investigations. The second task was to investigate the turbulent structure
of buoyancy-driven ows using Direct Numerical Simulation (DNS). Computer
based visualization and a decomposition technique called Proper Orthogonal De-
composition, POD, have been chosen as tools for this part.



Chapter 2

Literature review

Buoyancy-driven boundary layers have been investigated formany years with
varying degrees of success. In the beginning the focus was to perform single point
measurements using thermal anemometry to measure velocity andtemperature
separately. The problem with thermal anemometry is that velocity measurements
can not be made very accurately in ows with varying temperature. With the
development of laser based methods that are capable of measuring velocity more
accurately, independent of temperature variations, more reliable data was ob-
tained. The rapid increase of computer capacity for the last decades has lead to
that much work is spent on numerical simulations. This has in someways shifted
the focus from basic research to more applied studies.

In this chapter a review is presented of previous work most related to this study
is presented. For more detailed reviews on buoyancy dominated ows, see Wos-
nik (1994). The chapter is divided into one section about previous experiments
and another section about previous theoretical and numerical investigations. The
conclusion of the review is that there is a great need to conduct new, re�ned
experiments because of the discrepancies found in the previous investigations.

2.1 Previous experimental investigations

Cheesewright (1968) used used hot-wire anemometry (HWA) and resistance wires
for measurements of velocities and temperatures of a turbulent natural convection
along a heated vertical at plate. This was considered to be the best experiment
until Hoogendorn and Euser (1978) found that the energy balance was not sat-
is�ed in Cheesewrights experiment. Hoogendorn and Euser used hot-wires and
thermo-couples for the velocity and temperature measurements, respectively. The
problem when using HWA in turbulent natural convection ows isthat the ex-
pected velocities in these ows are less than 1 m/s and that the HWA is sensitive
to velocity and temperature simultaneously, which makes it di�cult to separate
velocity uctuations from temperature uctuations. For such small velocities is

3



4 CHAPTER 2. LITERATURE REVIEW

the HWA very di�cult to calibrate and the accuracy of measured results is poor.

Hoogendorn and Euser used a special low velocity anemometer for velocities below
0.3 m/s. Ierokipiotis (1983) used laser doppler anemometry (LDA) to measure
the velocity. The main advantage of LDA compared to HWA in thiscase is that it
gives accurate measurements for low velocities and it does not a�ect the ow, since
it is a non-intrusive technique. Another challenge in this owis to perform simul-
taneous measurements of velocity and temperature with high spatial resolution
so both quantities can be considered to be measured in the same point. This is
needed to obtain the physically and theoretically importantvelocity-temperature
correlations. Miyamoto et al. (1982) used LDA and thermo-couples, while Tsuji
and Nagano (1988a, b) used a combination of V-shaped hot-wires and resistance
wires for this purpose. Tsuji et al. (1991) extended previous work to higher
Grashof number. The Grashof number is a fundamental parameterthat governs
buoyancy-driven ows. More about it is given in chapter 3. They found that the
Reynolds's stress,vxvy, was positive all the way to the wall. On the other hand,
Kato et al. (1993) found a region of negativevxvy using LDA for the velocity
measurements. Persson and Karlsson (1996) also found a region of negative vxvy

close to the wall, but they used a vertical cylinder instead of a vertical at plate.
They used LDA for the velocity measurements and a cold wire as resistance ther-
mometer for the temperature measurements. There are uncertainties in to what
extent the resistance wire a�ected the velocity measurement. Recent work on
measurement technique for simultaneous measurements of velocity and tempera-
ture, of relevance for the present work, is reported by Heist andCastro (1998),
Pietri et al. (2001) and Tagawa et al. (2001). In particular,Heist and Castro
(1998) show that a larger physical distance between LDA measuring volume and
thermometer is needed than that used by Persson and Karlsson(1996). Despite
some uncertainty in the result, the measurements of Tsuji and Nagano are the
ones often used to validate numerical simulations.

2.2 Theoretical and numerical investigation

The theoretical paper that is mostly cited is the paper by George and Capp (1979).
They based their theory on similarity analysis for in�nite Grashof numbers. Wos-
nik and George (1994) extended that theory to treat �nite Grashof numbers.
Versteegh and Nieuwstadt (1998) used direct numerical simulation to investigate
the natural convection between two vertical, di�erentially heated walls and quite
low Grashof number. Their results were not in agreement with the asymptotic
solution of George and Capp. This could have been anticipatedgiven the low
Grashof number. In particular, the important ratio of outer to inner length scales
need to be at least 1000 for an asymptotic theory to be applicable. For the DNS it
was lower than 100. Today, because of the increase in computer performance and
that shorter time for product development is demanded, much work for these kind
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of ows is spent on computational uid dynamics (CFD). Examples are Camargo
et al. (1996), Barhaghi et al. (2002) and Davidson et al. (2003). Computa-
tions often rely on theoretical and experimental investigations. Because of the
uncertainties mentioned in the previous section, the computations do not predict
accurate results, especially close to walls. This is why it is important to conduct
new experiments of the turbulent natural convection boundary layer next to walls
with the improved experimental techniques that are now available.
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Chapter 3

Theory for buoyancy-driven
boundary layers

The aim of this chapter is to provide a theoretical background to buoyancy-driven
boundary layer ows next to a vertical surface, including thegoverning equations.
Most focus will be put on pure natural convection, but mixed convection will also
be treated. A discussion about heat transfer features will also begiven. The
derivation of the governing equations follows Wosnik (1994). The approximations
that are made to achieve the equations are of interest and should be veri�ed in
the proposed experiment.

3.1 Turbulent natural convection

Natural convection belongs to a class of ows that are called buoyancy-driven
ows. Natural convection ows are caused by the density variations, most fre-
quently related to temperature di�erences or chemical reactions, together with
the acceleration of gravity. In the proposed experiment an internal cylinder wall
is maintained at a constant temperature, which is higher thanthe surrounding
temperature. The uid will start to move from the bottom and form a laminar
boundary layer. When the uid is moving farther up along the wall the boundary
layer will evolve into a transition region and �nally it will b ecome turbulent and
ultimately, provided that the cylinder is long enough, fully turbulent.

The parameter that governs natural convection ow is the Grashof number de�ned
as

GrL �
g� (� w � �) L3

� 2
(3.1)

whereg is the acceleration of gravity,� is the kinematic viscosity, � w � � is the
di�erence between the local temperature and that at the wall, � is the thermal
expansion coe�cient and L is a length scale (often chosen as the vertical dis-
tance along the wall).The Grashof number can be interpreted as a ratio between

7
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y

g

Vx

x

Figure 3.1: A schematic picture of the turbulent natural convection boundary layer
next to a heated wall with the coordinate system shown.

buoyant forces and viscous forces and is based on a vertical length scale. Another
parameter of interest is the Rayleigh number, which is simplyRaL = Pr � GrL . Pr
is the Prandtl number de�ned as�=� . The transition from laminar to turbulent
ow occur around GrL ' 109. Critical values of GrL ranging from 3.5� 108 to
1.5� 1010 have been reported for air ows (Wosnik 1994). A schematic picture of
the natural convection along a vertical wall is shown in �gure3.1.

Turbulent ows often arise from laminar ows as the Reynolds number (or the
Grashof/Rayleigh number as in the case of natural convection)is increased. This
is because small disturbances to the ow are not damped out by theow and
instead begin to grow by taking energy from the original laminar ow. One have
to notice that there are two critical Grashof numbers. The �rst is when the ow
becomes unstable at the �rst time and the second when the ow becomes fully
turbulent. There is no exact de�nition of turbulence but there are some general
characteristics of turbulent ows (Tennekes and Lumley (1972)).

� Turbulent ows are irregular and have a three-dimensional spatial character.

� Turbulent ows are very dissipative, which means that the kinetic energy
is transferred from large scales to small scales and then �nally transformed
into internal energy.

� Turbulent ows are di�usive which give rise to an increase in mass,momen-
tum and heat transfer.

� Turbulence occurs at high Reynolds numbers or as in the case with turbulent
natural convection, high Grashof/Rayleigh numbers.
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V(t) 

t 

Figure 3.2: A turbulent velocity signal as function of time. The straightline is
the average value.

� Turbulence is a continuum, which means that the smallest turbulent scales
are much larger than the molecular size.

� Turbulence is not a feature of the uid but of the uid ow.

In �gure 3.2 is a turbulent velocity signal shown as function oftime. The straight
line showing the average value.

3.2 Governing equations

Below are the instantaneous governing equations (continuity, momentum and en-
ergy) given in Cartesian tensor notation.

Equation of continuity

@e�
@t

+
@e� eVi

@xi
= 0 (3.2)

Equation of momentum

e�

"
@eVi

@t
+ eVj

@eVj

@xj

#

= �
@eP
@xi

+
@fTij

@xj
+ e�g i (3.3)

Equation of energy

e�c p

"

eVj
@e�
@xj

+
@e�
@t

#

� � e�

"
@ep
@t

+
g

Vj
@ep
@xj

#

=
@

@xj

 

k
@e�
@xj

!

+ � (3.4)
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where

fTij = 2�
�

fSij �
1
3

fSkk � ij

�
(3.5)

fSij =
1
2

"
@eVi

@xj
+

@eVj

@xi

#

(3.6)

� �

"

�
1
~�

�
@~�

@~�

�

p= contant

#

1

(3.7)

and � is the dissipation function,� ij is the Kronecker delta and� is the volumet-
ric coe�cient of thermal expansion.

To make it easier to handle, e.g. using statistically analysis, theinstantaneous
quantities can be divided into two parts, a mean and a uctuating part. This
decomposition is calledReynolds decomposition(Panton 1996). Reynolds decom-
position is performed on pressure, density, temperature and velocities as shown
below:

eP = P + p

e� = � + �

e� = � + �

eVi = Vi + vi

where a capital letter means mean quantities and a lower case letter means uctu-
ating quantities, except for density where mean density is denoted by an overbar.
The above quantities are dependent on both time and position.The mean quan-
tities are ensemble averages and, for example in case ofVi , de�ned as

Vi (x; y; z; t) � lim
N !1

1
N

NX

n=1

eVi
(n)

(x; y; z; t) (3.8)

'N' is the total number of independent experiments. The other average quantities
are de�ned in similar ways. It should be noted that an ensemble average is im-
possible to achieve during laboratory work. The governing equations 3.2-3.4 can
be simpli�ed. If the ow is assumed to be statistically stationary in time, these
ensemble averages can be replaced by time averages.

Further, the dissipation function can normally be neglected.This can be done
because the expected velocities are small and the temperaturedi�erences are not.
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These equations can be even more simpli�ed if assuming that the ow can be
treated as incompressible. Flows that have large length scales,e.g. natural con-
vection ow phenomena in the atmosphere, can not be treated asincompressible.
For the experiment in this project, with a moderate length scale, it is a suitable
assumption that the pressure can be treated as incompressible (Wosnik 1994).
Using above assumptions, the equations 3.2-3.4 become:

Equation of continuity

@eVi

@xi
= 0 (3.9)

Equation of momentum

~� ~Vj
@~Vi

@xj
= �

@~p
@xi

+
@

@xj

 

�
@~Vi

@xj

!

+ gi ~� (3.10)

Equation of energy

e�c p
eVj

@e�
@xj

=
@

@xj

 

k
@e�
@xj

!

(3.11)

To account for temperature dependence of density the gradient of the hydrostatic
pressure distribution can be written as:

 
@~P
@xi

!

y!1

=
@P1
@xi

= � 1 gi (3.12)

P1 is the hydrostatic pressure at in�nite distance from the wall. If assuming
that the density can be treated as constant everywhere except where it appears
in the body force, the Boussinesq assumption (Incropera 1995), the equation of
momentum becomes

~Vj
@~Vi

@xj
= �

1
� 1

@(P? + p)
@xi

+
@

@xj

 

�
@~Vi

@xj

!

+ gi
~� � � 1

� 1
(3.13)

where P? is the mean static pressure minus the hydrostatic pressure. The uc-
tuating pressure can be expanding in a Taylor series to relate the density to
temperature. If neglecting higher order terms, the linearization becomes

~� � � 1 � � � 1 � ( ~� � � 1 ) (3.14)

where the volumetric coe�cient of thermal expansion, eguation 3.7, has been used
again. If applying this linearization and averaging it willlead to the following set
of equations.
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Equation of continuity

@Vi
@xi

= 0 (3.15)

Equation of momentum

Vj
@Vi
@xj

= �
1

� 1

@P?
@xi

+
@

@xj

�
�

@Vi
@xj

� vi vj

�
� gi � (� � � 1 )� i 1 (3.16)

Equation of energy

Vj
@�
@xj

=
@

@xj

�
�

@�
@xj

� vj �
�

(3.17)

Note that the operations of averaging and di�erentiation commute. The lin-
earization is not a good approximation for large temperature di�erences, but for
moderate di�erences it is a suitable approximation.

3.3 The Reynolds' stress equation

An equation for the uctuating velocities can be obtained by subtracting the
momentum equation for the mean motion from the equation for the instantaneous
motion.

Vj
@vi
@xj

= �
1
�

@p
@xi

+
@

@xj
(2�s ij ) �

�
vj

@vi
@xj

� vj
@vi
@xj

�
� vj

@Vi
@xj

+ g��� i 1 (3.18)

Multiplying this equation by vk and averaging leads to

Vj vk
@vi
@xj

= �
1
�

vk
@p
@xi

+ vk
@

@xj
(2�s ij ) � vkvj

@vi
@xj

� vkvj
@Vi
@xj

+ g��� i 1 (3.19)

Rewriting this equation with reversed indexes i and k, addingboth equations and
rearranging leads to an equation forvkvi

Vj
@vkvi

@xj
=

@
@xj

�
1
�

(vi p� kj + vkp� ij ) � vi vkvj + 2� (vksij + vi skj )
�

+
p
�

�
@vi
@xk

+
@vk
@xi

�
�

�
vi vj

@Vk
@xj

+ vkvj
@Vi
@xj

�

� 4� sij skj + g� (vk �� i 1 + vi �� k1) (3.20)

This is the Reynolds' stress equation. If the free indices i and kare contracted it
will give the equation for the turbulent kinetic energy.

Vj
@( 1

2vi vi )
@xj

=
@

@xj

�
1
�

vj p + 2� (vi sij ) �
1
2

vi vi vj

�

� 2� (sij sij ) � vi vj Sij + g� vi �� i 1 (3.21)
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On the left-hand side is the convection of turbulent kinetic energy. The �rst three
terms on the right-hand side are transport terms due to pressure-gradient work,
viscous stresses and by velocity uctuations, respectively. The fourth term is the
viscous dissipation of turbulent kinetic energy. The �fth term is the turbulence
production and the sixth term is the buoyant production.

In a similar way, an equation governing the transport of mean square temper-
ature uctuations can be derived. Subtracting the mean energy equation from
the instantaneous equation, multiplying with the uctuating temperature � and
averaging leads to

Vj
@

@xj

�
1
2

� 2

�
=

@
@xj

�
�

1
2

vj � 2 + �
@

@xj

�
� 2

� �
� vj �

@�
@xj

� �
@�
@xj

@�
@xj

(3.22)

3.4 Three parts of the boundary layer

The turbulent natural convection boundary layer next to a heated vertical wall can
be divided into two regions, an inner and an outer region, according to George and
Capp (1979) and Wosnik and George (1994). The inner layer can be divided into
two parts, the buoyant sublayer and the conductive and thermo-viscous sublayer.
A schematic picture of the boundary layer can be found in �gure3.3. In this sec-
tion are the equations for the di�erent sub-layers provided.The assumptions are
that the ow is homogenous in the spanwise direction and that the average veloc-
ity in that direction is zero. Because of the cylindrical geometry for the proposed
experimental set-up, the governing equations are given in cylindrical coordinates
in appendix A. The x-direction is directed opposite to the gravitational force and
the y-direction is the direction directed out from the the heated wall, as shown in
�gure 3.1.

Equation of continuity

@Vx
@x

+
@Vy
@y

= 0 (3.23)

Equation of momentum in cross stream direction
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(3.24)

Equation of momentum in vertical direction

�
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@Vx
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�
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(3.25)



14CHAPTER 3. THEORY FOR BUOYANCY-DRIVEN BOUNDARY LAYERS

A B C

Figure 3.3: The three parts of the turbulent natural convection boundary layer. A:
The thermo-viscous and conductive sublayer. B: The buoyant sublayer. C: The
outer region.

Equation of momentum in spanwise direction

0 =
@(� vxvz)

@x
+

@(� vyvz)
@y

(3.26)

Equation of energy

�c p

�
Vy

@�
@y

+ Vx
@�
@x

�
= k

@2�
@y2

+ k
@2�
@x2

+
@(� vy � )

@y
+

@(� vx � )
@y

(3.27)

3.4.1 The outer region of the boundary layer

Further, the boundary layer approximation that @=@x� 1=L � @=@y� 1=� ,
where L is a streamwise and� is a cross stream length scale, is applied and an
order of magnitude analysis is performed (Tennekes and Lumley 1972). The mean
velocities and temperature are scaled withVSo and � So and the uctuating veloc-
ities and temperature withvSo and � So. When doing the above steps the following
set of equations are achieved

Equation of continuity

@Vx
@x

+
@Vy
@y

= 0 (3.28)
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Equation of momentum in vertical direction

Vx
@Vx
@x

+ Vy
@Vx
@y

' �
@(vxvy)

@y
+ g� (� � � 1 ) (3.29)

Equation of energy

Vx
@�
@x

+ Vy
@�
@y

' �
@(�v y)

@y
(3.30)

with the following boundary conditions as y! 1

Vx = 0 (3.31)

� = � 1 (3.32)

� vyvx = 0 (3.33)

� vy � = 0 (3.34)

The y-momentum equation has been used to eliminate the pressureterm in the
x-momentum equation. No viscous and conduction terms remain in the reduced
equations 3.28-3.30. This imply that these equations are notvalid close to the
wall. A thing that is important to mention is that equations 3.29 and 3.30 are
only exactly true at in�nite Reynolds and Peclet numbers (Wosnik and George
(1994)). At �nite value residual e�ects of the neglected terms remain.

-vyvx , -vxvz and -vyvz are the turbulent stresses and -vy � and -vx � are the tur-
bulent heat uxes. These terms are the reason why turbulent owsare di�cult.
With these non-linear uctuating terms there are more unknown variables than
equations. This is referred tothe turbulence closure problem. The turbulent stress
and heat ux terms often have to be modelled when performing numerical com-
putations.

3.4.2 The thermo-viscous and conductive sublayer

The region closest to the wall is called the near wall region. Itcan be divided into
two parts, the buoyant sublayer and the thermo-viscous and conductive sublayer.
In the thermo-viscous and conductive sublayer, the sublayer closest the wall, are
viscous forces important in the momentum equations and conduction is important
in the energy equation. The momentum equations and the energy equation must
then have at least one viscous and one conduction term, respectively. In order
to get this the governing equations must be rescaled with innerlength scales,
� � �=VSi and � t � �=V Si , which have to be su�ciently small relative to � , i.e
the Reynolds and Peclet numbers based on these inner length scales should be of
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order unity. VSi and � Si are the scaling quantities for the mean temperature and
velocities in inner variables. For scaling of uctuating temperature and velocities
are � Si and vSi used. The continuity equation is the same as in equation 3.28 and
the momentum equation and the energy equation becomes then

Equation of momentum in vertical direction

0 '
@
@y

�
�

@Vx
@y

� vxvy

�
+ g� (� � � 1 ) (3.35)

Equation of energy

0 '
@
@y

�
�

@�
@y

� vy �
�

(3.36)

with the following boundary conditions at y = 0

Vx = 0 (3.37)

� = � w (3.38)

� vxvy = 0 (3.39)

� vy � = 0 (3.40)

Equations 3.35 and 3.36 can be integrated with respect to y. The integrated
x-momentum equation becomes

�
@Vx
@y

� vxvy +
Z y0

0
g� (� � � 1 )dy0 �= �

�
@Vx
@y

�

y=0

�
� w

�
� u2

? (3.41)

where � w is the wall shear stress andu? is the friction velocity. The inner layer
can not be a constant stress layer because of the presence of the integral of the
buoyancy force term, except probably at in�nite Grashof number. Whether the
buoyancy term remain in this limit is not clear. George and Capp (1979) and
Wosnik and George (1994) assume it does. Recently however, thereare theoretical
arguments that it does not (George 2003). An issue is whetherg� must be included
as a scaling parameter in the inner region or not. The integrated energy equation
becomes

�
@�
@y

� vy � �= �
�

@�
@y

�

y=0

� �
qw

�c p
� � F0 (3.42)

whereqw is the wall heat ux, � is the thermal di�usivity and F0 is the kinematic
wall heat heat ux. From equation 3.42 the heat ux can be concluded to be
constant across the inner layer and that it is independent of the radial distance.
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3.4.3 The buoyant sublayer

There is a ow region at the outside of the the inner layer whereviscous and
conduction terms are losing their importance. This region can also be seen as the
inside of the outer ow region. This region is called the buoyant sublayer. For this
region the only terms in the reduced equations that remain are the ones that are
common for both the outer and the inner ow regions. The continuity equation
is the same as 3.28 and the x-momentum equation and energy equation becomes

Equation of momentum in vertical direction

0 ' �
@(vxvy)

@y
+ g� (� � � 1 ) (3.43)

Equation of energy

0 ' �
@(vy � )

@y
(3.44)

From equation 3.43 and 3.44 it is clear that the Reynolds' stressis continuously
modi�ed by the buoyancy term and that the heat ux in this region is almost
constant. As noted above for the viscous sublayer, whether buoyancy should be
included here is also an issue (George 2003).

3.5 Heat transfer

Heat transfer is one of the most important things in industrial uid mechanics.
Problems involving both minimizing heat transfer, include heat losses from pipes,
and maximizing heat transfer and cooling of electronic components. Heat trans-
fer can be divided into thermal radiation, conduction and convection. Thermal
radiation is energy emitted by matter that is at �nite temperature, and conduc-
tion can be viewed as the transfer of energy from more energetic to less energetic
particles of a substance due to interactions between particles. As should have
been understood from previous discussions, the focus in this project is on con-
vective heat transfer. In convective heat transfer is energy transferred both by
random molecular motion (di�usion), and macroscopic motion of the uid. Of-
ten the term advection is used for macroscopic uid motion and convection for
cumulative transport. Contribution from di�usion dominates closer to the wall
but the macroscopic uid motion becomes more important as theboundary layer
grows. As mentioned in sec. 3.1 the heat transfer rate increases when a ow
becomes turbulent compared to laminar ows. This means that if the problem is
to minimize the heat transfer one should avoid getting transition to turbulence.
If one wants to maximize the heat transfer one should instead promote turbulence.
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Heat transfer laws are commonly given in terms of a local Nusselt number (di-
mensionless heat transfer coe�cient). For engineering situations it is often some
kind of average value of the heat transfer that is wanted. Thisgives a prediction
of the overall heat transfer. A scientist instead, is more interested in the local
heat transfer rate for investigation of ow structures. For a laminar boundary

layer, with constant wall temperature, the relation Nux / Gr
1
4
x is found from

exact solutions of the boundary layer equations (Ostrach (1953)). The relation is
based on a vertical length scale. For a turbulent boundary layer there is no exact
solution and di�erent suggestions for the relation is often found in the literature.
Engineers tries to improve their computational models by changing constants in
formulas so it suits their ow cases better. This works for engineering purpose
but it will not give a general solution and understanding of theproblem. The
relation that is mostly accepted is the one from George and Capp (1979). They
matched the scalings for the temperature pro�les for inner and outer regions and
achieved the following formula for constant wall temperature.

Nux = f (P r)H
1
3
x (3.45)

where 'f' is a function of the Prandtl number andHx is referred to "the H-number"
and Hx is de�ned asGr x � Nux � P r2. The heat transfer is independent of the
vertical distance x. It has been shown by Wosnik (1994) and Wosnikand George
(1994) that this equation is only valid at in�nite Reynolds number. In practice is
a Reynolds number of 103 � 104, based on the outer length scale, needed to reach
this in�nite limit. This mean Grashof numbers about 108 � 1012 or larger. The
physical reason for this is that at �nite Reynolds number occurs the dissipation
over the entire energy spectrum, due to the fact that the energy containing and
dissipation wave number are not separated. For �nite numbers, which are the
cases for laboratory measurements and engineering problems, the heat transfer
retain its x-dependence. It is instead dependent on the boundary layer growth
and the local Reynolds number.

3.6 Mixed convection

Besides of pure buoyancy-driven ows there can also be buoyancy-driven ows that
are a�ected by a pressure gradient that is due to the free stream velocity. This is
said to occur whenGr=Re2 � 1 and these ows are called mixed convection ows.
This means that both equations for natural convection and forced convection
must be used and makes it very hard to deal with theoretical. There are very
few theoretical papers dealing with mixed turbulent convection. The boundary
conditions will also be di�erent. For example, the free streamvelocity does not
equal zero at in�nity, but instead equals the free stream speed.One can not
exclude the buoyancy terms, as for forced convection, and on the other hand can
they not be kept fully, as in case of natural convection. The DNSdata used in
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the present study for analyzing buoyancy-driven boundary layer ows are from a
mixed convection case.
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Chapter 4

Coherent structures and POD

In this chapter will a discussion about coherent structures be given. Equations
for the proper orthogonal decomposition, POD, of a velocity �eld will also be
provided. The focus is put on a variant called "snapshot POD". The energy
distribution and reconstruction of velocity components willbe shown.

4.1 Coherent structures

In the present work one of the tasks was to investigate the turbulent structures
in buoyancy-driven boundary layers. When investigating how the turbulence is
created and transferred, much of the work found in the literature was focused
on looking for di�erent kind of vortex structures. These are frequently called
coherent structures. The problem with this concept is that there is no universal
de�nition of vortex or coherent structures, which makes the whole idea very vague.
For example Robinson (1991) de�nes a coherent motion asa three-dimensional
region of the ow over which at least one fundamental ow variable (velocity
component, density, temperature, etc.) exhibits signi�cant correlation with it self
or with another variable over a range of space and/or time thatis signi�cantly
larger than the smallest local scales of the ow. From this de�nition one can more
or less say that a coherent structure is any by some arbitrary meanidenti�able
structure in the ow. The main reasons for studying coherent structures are to

� aid predictive modeling of the statistics of turbulent ows.

� make it easier to control turbulence.

� try to understand the dynamical phenomena that occur in the ow.

Frequently, a pressure minimum is used as a detection criterionfor a vortex core.
There are two things that makes this de�nition inconsistent. First, there can
be unsteady straining, which can create a pressure minimum without involving
a vortical motion or swirling motion. Second, viscous e�ects can eliminate the
pressure minimum in a ow with vortical motion. Jeong and Hussain (1995)

21
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proposed another method which removes the above e�ects. This method will be
used in the present study. The information on local pressure extrema is contained
in the Hessian of pressure (@2p

@x 2 ). A Hessian is a matrix of second partial derivatives
of a function, in this case pressure. An equation involving the Hessian of pressure
can be obtained by taking the gradient of the momentum equations which gives

@a
@x

= �
1
�

@2p
@x2

+ �
@3v
@x3

(4.1)

where the left hand side is the acceleration gradient. Note that the Hessian of the
pressure is symmetric. The left hand side can be decomposed into symmetric and
antisymmetric parts as
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 + S � S
�

| {z }
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+
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�

| {z }
antisymmetric

(4.2)

The antisymmetric part is the vorticity equation, while the symmetric part is

�
1
�

@2p
@x2

=
DS
Dt

� �
@2S
@x2

+ 
 � 
 + S � S (4.3)

where D
Dt is the material derivative, S is the strain-rate tensor and
 is rotation

tensor. The �rst term on the right hand side of equation 4.3 is theunsteady
straining and the second term contains the viscous e�ects. These two terms will
be omitted according to the above method by Jeong and Hussain (1995). Only

 � 
 + S � S will be considered for determination of a local pressure minimum.
The de�nition in this case for a vortex core isa connected region with two negative
eigenvalues of
 � 
 + S � S. Since this expression is symmetric it has only real
eigenvalues. Another fact is that in a plane, the requirement for a local pres-
sure minimum are two positive eigenvalues of the Hessian of pressure(Jeong and
Hussain (1995)). From this is the de�nition for a vortex core that the second
eigenvalue should be negative. This is the de�nition that will be used in the
present study for visualization of turbulent structures.

4.2 Proper orthogonal decomposition

Above was a technique to visualize vortex structures given. Another way to
investigate the turbulent structures is to use a technique called Proper Orthogonal
Decomposition (POD). This was introduced into the uid dynamic �eld by Lumley
(1967). From now on will (�) and (�0) mean (x; y; z; t) and (x0; y0; z0; t0), respectively.
The basic idea is as follows. Take a four dimensional, random, vector �eld v(�).
Seek a deterministic vector �eld� (�) which has the maximum projection on the
random �eld, v(�), in a mean square sense. Another way to describe it is to �nd a
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deterministic �eld, � (�), for which j  j
2

= < j v; (�)� (�) j2> is maximized. If v(�)
and � is de�ned on a Hilbert space, then the inner product can be de�ned as

(v; (�)� � (�)) =  =
Z Z Z

V
v(�)� (�)� d(�) (4.4)

asterisk means complex conjugate. If calculus of variation isapplied, then the
right choice of � (�) to maximize < j  j2> is a solution to the integral equation

Z



R(�; �0)� (�0)d(�0) = � � (�) (4.5)

whereR(�; �0) is the two-point correlation function de�ned as

R(�; �0) � v(�)vT (�0) (4.6)

Here, a variant of the POD technique, called "snapshot POD", will be used. The
original POD is more suitable for high temporal resolution andlow spatial resolu-
tion, as in case of hot-wire measurements. The "snapshot POD" is preferred when
one have high spatial resolution but low temporal resolution, like PIV measure-
ments (Pedersen 2003). In the case of DNS data one can choose whichone to use
but, as will be seen later, the "snapshot POD" is more computationally e�cient.
The "snapshot POD" was �rst derived by Sirovich (1987). When performing a
POD the data must be to be uncorrelated, in practice separationtwo times the
integral scale in times ensures this. If number of samples are large, the two-point
space-correlation tensor becomes approximately

R(�; �0) =
1
N

NX

l=1

v l (�)vT
l (�0) (4.7)

where k and l are the realization number, i.e. di�erent time steps. N is the total
number of realizations and T denotes transpose. Assume that the basis modes
can be written as

� (�) =
NX

k=1

Ak(�)vk(�0) (4.8)

then equations 4.7 and 4.8 together with equation 4.5 gives
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Equation 4.9 can be rewritten as
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This can be written as an eigenvalue problem, which in matrixform can be ex-
pressed as

CA = � A (4.11)

A is now Ak;l and equation 4.11 is the same as equation 4.10, but for all l. When
solving the eigenvalue problem given by equation 4.11 the result is N orthogonal
eigenvectors and corresponding eigenvalues. The eigenvectors can be used to
obtain the basis modes in equation 4.8.

� k(�) =
P N

l=1 Ak;l v l (�)


P N

l=1 Ak;l v l (�)




(4.12)

Equation 4.12 has been normalized to obtain an orthonormal basis. The above
equations are for continous data, but in practice the data are discrete. The dis-
cretized eigenvalue problem 4.11 can be written as

ĈA k = � kA k (4.13)

whereĈ is calculated as

Ĉ = vT v (4.14)

In the same way can the discretized eigenvalue problem for classical POD be
written as

R̂� k = � k � k (4.15)

whereR̂ is calculated as

R̂ = vv T (4.16)

The size of matrix Ĉ is N � N while R̂ has sizemno � mno. For the present
study, m is number of velocity components used andn and o are number of
points in the two dimensional spatial domain. From this can be seen that there
is a huge reduction in computational cost for "snapshot POD" if one have high
spatial resolution but not high temporal resolution. For the DNSdata used in
the present study,N is 126 andmno is about 30 000. The eigenvalue problem is
solved and the eigenvalues are ordered according to their size, largest �rst. The
eigenvectors from equation 4.13 can be used for constructing the POD modes
according to equation 4.12. The POD modes for the "snapshot POD" becomes

� k =
P N

l=1 Ak;l (�)v l (�)


P N

l=1 Ak;l (�)v l (�)




(4.17)

The original velocity �eld can be reconstructed by expandingit in series using the
POD basis. The original velocity �eld is projected onto the PODbasis and thus
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are the expansion coe�cients, POD coe�cients, determined. Theexpansion for
the discrete case is

v l =
NX

k=1

bk;l � k = 	b n (4.18)

where	 = [ � 1 � � � � N ]

b l = � T
l u l (4.19)

One of the most important features of POD is that the eigenvalues are a measure
of the turbulent kinetic energy. The largest eigenvalue and corresponding basis
mode can be used to describe the most energetic structures of the velocity �eld.
The total turbulent kinetic energy is given by the sum of all eigenvalues.
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Chapter 5

The computational geometry

The data that will be used for analyzing the turbulent structures are from a direct
numerical simulation (DNS). It is important later, when drawing conclusions,
to know the conditions for the computation. For a detailed description of the
numerical part, see Davidson et al. (2003). The basic idea of DNS is to solve
the governing equations at su�ciently high temporal and spatial resolution that
everything in the ow can be considered as resolved and turbulence models are
not used. The problem with DNS is that it requires a large computer capacity
and today is it not possible to use DNS for complex ow cases and one is limited
to small time and space domains. The ow case under consideration here is fully
developed mixed convection in a vertical channel. The geometry can be found in
�gure 5.1. One wall is hot, (� = 1), and the other wall is cold, ( � = 0). The
dimensionless height (H) is 8� , the width (W) is 2 and the depth (D) is 2� . In x-
and z-directions are periodic boundary condition applied,i.e. what goes in must
also go out. The z-direction it not physical bounded, only in the computational
geometry, and that is why the dashed lines are used. Because thisis a mixed
convection ow, both the Reynolds and Grashof numbers are important. The
Reynolds numberRe� = u? H=2

� = 150, where u? is the friction velocity (which
in this case equals unity). The Grashof number equals 7:68� 106. These values
are low, which means that there is no scale separation between inner and outer
length scales. This imply that the asymptotic theory will not bevalid for this
simulation.
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Figure 5.1: The computational geometry



Chapter 6

Results

6.1 Results from the visualization

The visualization was performed on the above DNS data for 114 time steps. The
second largest eigenvalues were calculated using a FORTRAN code. The visual-
ization was made in TECPLOT. Iso-surfaces for all negative second eigenvalues
are used in the analysis. The reason for performing this investigation of turbulent
structures is to investigate if this ow �eld contains vortex structures that takes
the form of a horseshoe, so called horseshoe vorticies. If this is the case, it is be-
lieved that the simulation has high enough Grashof/Reynolds number to capture
these structures. From �gure 6.1 one can identify some horseshoe structures. In
the left �gure is the horseshoe structure located closer to the hot wall than in the
right. The right �gure is from a later time step than the left �g ure. The �gures
are only part of the whole computational geometry.

6.2 Results from the POD analysis

The POD computations were made in MATLAB. The mean velocitieswere sub-
tracted from the instantaneous velocities to get the uctuations. These uctua-
tions were arranged in a vector instead of a matrix. All velocity components were
placed in the same vector, which makes the computation e�cient. As mentioned
in chapter 4, POD gives an estimate of the energy distribution for di�erent sizes of
the structure. In �gure 6.2 is the energy distribution for the �rst 50 modes shown.
All three velocity components have been used in the left �gure.One can se that
the largest structures contains less than 7 % of the total kinetic energy. This is a
very low value compared to results from other ow cases, for example Johansson
(2002). It should also be mentioned that it only a�ected the result slightly if one,
two or all three velocity components were used. In the left part of �gure 6.2 is
only the streamwise uctuating velocity component used. The �rst mode contains
in this case about 9 % of the total kinetic energy. Further, theenergy decrease
with smaller and smaller structures, but not as rapidly as expected. As has been
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X
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Z

Horseshoe vortex

Horseshoe vortex

Figure 6.1: Visualization of vortex structures for part of the computational geom-
etry. Right �gure is for a later time step than the left �gure. In both �gures can
horseshoe structures be identi�ed

reported for other ow cases the POD analysis has shown that the most energy is
contained in only the �rst modes and the rest can be neglected (Johansson 2002).
This can not be done in this case. All modes seem to be important. This can
be seen when a reconstruction of the velocity �eld is made. In �gure 6.3 is the
uctuating streamwise velocity component for 3 and 50 modes for one time step
shown. They are both compared with the original velocity �eld. It is plotted
for a position in the middle of the geometry (x-direction) andacross the whole
geometry. With only three modes the reconstruction is quite poor. The velocity
does not even have the same sign. When using 50 modes, the reconstruction is
more similar to the original velocity �eld. Their can be a couple of explanations
why these results appear. One possible explanation could be that126 snapshots
are to few to give an accurate statistical independent analysis.This is a prob-
lem when using DNS data. One gets a huge amount of data and it takes long
time to calculate it. For example, these 126 snapshots took about 80 hours to
calculate and generated about 2 gigabyte of data. Another reason can be due to
the cyclic boundary conditions and the ow case it self. In Figure 6.4 are the
instantaneous velocity vectors (streamwise and cross-stream) for a certain time
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Figure 6.2: The energy distribution for the �rst 50 modes. Left: All uctuating
velocity components used. Right: Only the streamwise component used.

step shown. From this �gure it can be argued that the ow �eld in x-direction is
periodic which means that the "snapshot POD" should not be used directly. It
seems that the periodic boundary conditions makes the solution not physically a
real solution. The velocities have to be Fourier transformed in these directions
before doing the POD analysis. This will make the POD computations much more
time consuming. A comparison was performed to see what happens to the POD
analysis if correlated data was used instead of the uncorrelated data. Number of
snapshots were about the same. From this was found that the �rst mode con-
tained about 27 % of the energy, see �gure 6.5. This is a result that was expected
from the uncorrelated data also. This does not mean that correlated data should
be used for this kind of analysis. It probably only means that to few correlated
data were used, so the physical time was very short, and because of that nothing
signi�cant happened with the ow during the analysis.
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Figure 6.3: Comparison between the original streamwise velocity uctuations and
the reconstructed. In the left �gure has three modes been usedand in the right has
50 modes been used.
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velocity component for a certain timestep.
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Chapter 7

Concluding remarks

In this master thesis has an investigation been made on boundarylayers caused by
buoyancy-driven ows. A literature review was performed andan analysis of the
turbulent structures in the ow was performed. It is obvious from the literature
that a new large-scale experiment is needed to verify the theories, especially at
large Grashof number. From the visualization it is found that this ow case has
so called horseshoe structures. From the POD analysis is it clear that more work
should be spend on that technique for this ow case. The energy distribution was
found to be di�erent from other ow cases.

7.1 Future work

Besides assembling of the experimental facility and initial measurements it is sug-
gested that more attention is paid to the POD analysis of the owcase. This
should be done rather than analyzing coherent motions based onpressure mini-
mum criteria, because the pressure minimum criteria is very vague and there is
no universal de�nition. The following ideas should be tested toimprove the POD
results.

� Make a Fourier transform in the seemingly periodic directions.

� Use larger amount of uncorrelated samples in the analysis

A natural continuation of the POD analysis is to perform it on measurements as
well as on DNS data. This will give an answer to if the results are due to boundary
conditions or something else related to the computations, or ifthe di�erence in
energy is small between the di�erent modes for this kind of ow.
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Appendix A

Boundary layer equations in
cylindrical coordinates

In this appendix is the governing equations for a turbulent natural convection
boundary layer given in cylindrical coordinates. It followsthe same structure
as for the cartesian equations in chapter 2. It has been assumed that it is 2-
dimensional ow. The x-direction is directed opposite way of the gravitational
force and r-direction is the radial direction directed out from the the heated cylin-
der wall.

The outer region of the boundary layer

Equation of continuity

@Vx
@x

+
1
r

@(rVr )
@r

= 0 (A.1)

Equation of momentum in vertical direction
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Equation of energy
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with the following boundary conditions as r! 1

Vx = 0 (A.4)

� = � 1 (A.5)

� vr vx = 0 (A.6)
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� vr � = 0 (A.7)

The thermo-viscous and conductive sublayer

Equation of momentum in vertical direction
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Equation of energy
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with the following boundary conditions at r = 0

Vx = 0 (A.10)

� = � w (A.11)

� v0
r v0

x = 0 (A.12)

� vr � = 0 (A.13)

The buoyant sublayer

Equation of momentum in vertical direction
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Equation of energy
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Appendix B

Speci�cations for the proposed
experimental facility

In this chapter are some details about the proposed experimental facility provided.
Some basic data is summarized in the table below.

Diameter of outer isolating shell 1.2 m
Diameter of the heated cylinder 0.15 m

Height of the heated cylinder 4.5 m
Max. temperature of cylinder 80� C

Max. Grashof number* 4 � 1011

Working uid Air
*According to equation 3.1 with� w = 80� C and � 1 = 20� C, � evaluated at the
�lm temperature and with height L=4m.

The proposed experimental facility (�gure B.1) consists of a centrally positioned
heated vertical aluminium cylinder that is 4.5 m high and 0.15 m in diameter.
The aluminium cylinder is enclosed by a circular shell that is 1.2 m in diameter
and an inlet box at the bottom and an outlet box at the top. The reason that
the aluminium cylinder is enclosed by a shell is to minimize disturbances from the
surrounding and to control the ow. By controlling the temperature and the ow
rate of the air around the heated cylinder, the co-ow (a smallow at small height
due to mixed convection) can be adjusted to be zero at a certainheight. This
mean that the thermal strati�cation can be controlled. The aluminium cylinder
is heated with water and the water ow is large so the cylinder can be considered
isothermal. Maximum temperature of the cylinder wall is about 80 degrees C,
which will give a Grashof number of about 4� 1011 at height 4 m. The water is
heated inside a water tank, which contains about 1m3, with electrical heaters.
The water tank is placed about 3 meters above the oor to increase the pressure
on the suction side of the pump in order to avoid cavitation.

The working uid is chosen to be air. Air is more suitable than water because
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Figure B.1: A schematic picture of the proposed experimental rig. The values are
in mm.

water has large refraction-index variations due to the variations in density which
makes optical methods impossible to use for accurate velocity measurements. It
is also easier to work with air than water, i.e. leakage. The airenters the system
from inlet pipes in the inlet box. The air ow circulates around the aluminium
cylinder and exits through an air collection hood at the top.The air from the
outlet passes through a HVAC (Heat, Ventilation and Air Condition) unit and is
cooled down. When the air has been cooled down it enters the inlets again. The
air should be uniformly distributed around the perimeter so that the inlet ow
becomes horizontal and directed radially inwards. This implies that the ow is to
be considered as axisymmetric and two-dimensional. This is of great importance
because this will specify well-known inlet and outlet boundary conditions, which
are one requirement for using the experiment for validation of turbulence models.
The outer shell has optical transparent windows to allow Laser based measure-
ment methods, such as LDA (Laser Doppler Anemometry) and PIV (Particle
Image Velocimetry), as well as ow visualizations.



Appendix C

Modi�cation of the contraction

As mentioned in chapter 1, the inlet velocity was not su�ciently uniform around
the inlet perimeter to be considered axisymmetric. It is believed that this was due
to the design of the initial contraction, see �gure C.1. Two cases were investigated
for the initial design of the contraction. The �rst measurementwas 25 mm over
the bottom plate and 5 mm out from the inlet. The second measurement was
25 mm over the bottom plate and 98 mm out from a screen that was placed
before the inlet to damp out the velocity uctuations. In �gur e C.2 is the radial
inlet mean velocity pro�le shown. These velocities were measured at 32 positions
around the inlet perimeter using a pitot-static tube and a sensitive, integrating
pressure transducer. In �gure C.3 is the deviation from the meanvelocity shown
for both cases. One can see that there is large deviation from themean value
at many positions. As already pointed out was this the reason for redesigning
the contraction. It is hard draw any conclusion whether or nota screen make any
improvement in this case. At some positions is the deviation smaller with a screen
and at other it is larger.

Figure C.1: The initial contraction with three screens shown. The ow iscoming
from right. The origin is placed in the center of the inlet section
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Figure C.2: The radial inlet mean ve-
locity pro�le for the initial contraction
with and without perforated plate.
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Figure C.3: The deviation from mean
velocity around the perimeter of the ini-
tial contraction.

The contraction was redesigned in order to improve the ow quality. The new
contraction is based on the contraction from Morel (1975 and 1977). Too reduce
the uctuations the outlet height for the modi�ed contracti on has increased from
50 mm to 120 mm. In �gure C.4 is a drawing of the modi�ed contraction. The
modi�ed inlet section has, because of that, increased in overalldiameter to 3 300
mm (including inlet pipes). More screens has also been added in hope to improve
the ow quality. The shape of the contraction is calculated using the two formulas:

Hc = H1 �
H1 � H2
�

r m
L c

� 2

r 3
c

L3
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for r c
L c

> r m
L c

.

H1 0.24 m Inlet height
H2 0.06 m Outlet height
L c 0.48 m Contraction length
rm 0.252 m Matching point
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Figure C.4: The modi�ed contraction with three screens shown. The ow iscoming
from right. The origin is placed in the center of the inlet section


