Further Investigation of
the Jet Mixing Layer Using
a 138 Hot-wire probe and the POD

June 4, 2001

Daehan Jung1, Stephan Gamard2, Scott H. Woodward1, and William K. George2

1State University of New York at Buffalo, Buffalo, USA
2Chalmers University of Technology, Göteborg, Sweden
Background

- previous work by Citriniti & George (2000) using 138 hot-wire probes and the POD suggested the structure of the shear layer at $x/D = 3.0$

![Diagram of shear layer with vortices]

Objective of this investigation

- to quantify how the energy modes change with Re_D
- to determine when or if ever the asymptotic trends become Reynolds number independent
- to investigate how the structures in the flow change with downstream position
What is the POD?

(a) the original velocity

(b) decomposition

(c) reconstruction
The Proper Orthogonal Decomposition

- Lumley (1967) define POD as a method finding functions to represent the velocity vector, $u_i(\vec{x}, t)$, in an optimal way from an energy sense

- functions are determined from the eigenvalue equation

$$\int_D R_{ij}(\vec{x}, t, \vec{x}', t') \phi_i(\vec{x}', t') d(\vec{x}', t') = \lambda \phi_j(\vec{x}, t)$$

- reconstruct the velocity from only most energetic modes

$$u^N_i(\vec{x}, t) = \sum_{n=1}^{N} a_n \phi^{(n)}_i(\vec{x}, t)$$

$$a_n = \int u_i(\vec{x}, t) \phi^{(n)*}_i(\vec{x}, t) d(\vec{x}, t)$$

- The turbulent kinetic energy:

$$E = \sum_{n=1}^{\infty} \lambda^{(n)}$$
Jet facility

- used by Glauser (1987), Citriniti (1996)
- nozzle diameter, $D : 0.098 \, m$
 - contraction ratio : 10 : 1

<table>
<thead>
<tr>
<th>$U, , m/s$</th>
<th>12</th>
<th>18</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re_D</td>
<td>78400</td>
<td>117600</td>
<td>156800</td>
</tr>
</tbody>
</table>

Potential core
Axisymmetric mixing layer
138 hot-wire probe array

- simultaneous sampling at all 138 positions
- to resolve large scales, remove the smaller ones to avoid the spatial aliasing problems (George & Taulbee 1992)
- 138 hot-wires: long sensing element
Eigenvalue contribution from all the POD modes

- To decide which POD mode is dominant in the turbulent kinetic energy.

\[E^{(n)} = \sum_{m} \int_{-\infty}^{\infty} \hat{\lambda}^{(n)}(m, f) \, df \]

- Clearly the first POD mode is dominant.
Energy distribution of the first POD mode, $\hat{\lambda}^{(1)}(m, f)$

$Re_D = 78400$ \hspace{1cm} $Re_D = 117600$ \hspace{1cm} $Re_D = 156800$
Normalized eigenvalues as a function of m

- The normalized eigenvalue, $\xi^{(1)}(m)$; i.e.,

$$\xi^{(1)}(m) = \frac{\int f \hat{\lambda}^{(1)}(m, f) \, df}{\sum_n \sum_m \int f \hat{\lambda}^{(n)}(m, f) \, df}$$
Variation in eigenvalues with Reynolds number

![Graph showing variation in eigenvalues with Reynolds number.](image)
Change in energy in azimuthal mode 0 with x/D

![Graph showing the change in energy in azimuthal mode 0 with x/D. The graph includes data points for different Reynolds numbers ($\text{Re}_D = 78400$, $\text{Re}_D = 117600$, $\text{Re}_D = 156800$) and shows the trend $0.5 / (x/D)$ for comparison. The graph is labeled with $n=1$, $n=2$, and $n=3$.](image)
Change in energy in higher azimuthal mode with x/D

- scaled by the shear layer variable, x/D

$Re_D = 78400$

$\eta^{(0)}/(x/D)$

$m \cdot x/D$

$n=1\times$
$n=2\times$
$n=3\times$

$\times x/D = 2.0$
$\times x/D = 2.5$
$\circ x/D = 3.0$
$\square x/D = 3.5$
$\diamond x/D = 4.0$
$\triangle x/D = 4.5$
$\bigtriangleup x/D = 5.0$
$\bigtriangledown x/D = 5.5$
$\blacktriangle x/D = 6.0$
Normalized eigenvalues for all Reynolds number

- azimuthal mode > 0

- scaled by the shear layer variable, x/D
Velocity reconstruction

- As a linear combination of the eigenfunctions and coefficient:

\[
r^\frac{1}{2} \hat{u}_1^N(r, m, f) = \sum_{n=1}^{N} \hat{a}_n(m, f) \hat{\phi}_1^{(n)}(r, m, f)
\]

\[
\hat{a}_n(m, f) = \int r^\frac{1}{2} \hat{u}_1(r, m, f) \hat{\phi}_1^{(n)*}(r, m, f) \, dr
\]

with inverse Fourier transform:

\[
\hat{u}_1^N(r, m, t) = \int e^{i2\pi ft} \hat{\hat{u}}_1^N(r, m, f) \, df
\]

\[
u_1^N(r, \theta, t) = \sum_{m=0}^{M} e^{-im\theta} \hat{u}_1^N(r, m, t)
\]

- Reconstructed velocity can be partial sum of POD mode, n, and azimuthal mode, m.
Velocity reconstruction at a point with POD mode
Velocity reconstruction at a field

- The original velocity

- First POD mode, all mode

- First POD mode, mode=0, 3-7
Animation of the reconstructed velocity

- $x/D = 2.0$
- $x/D = 4.0$
- $x/D = 6.0$
Summary, discussion, and conclusions

Similarity of the energy distribution

- the energy distribution of the first POD mode has **no dependence** on Re_D over the range of $78400 \leq Re_D \leq 156800$.
- Mode-0 behaves entirely different than the higher modes.
- The eigenspectra collapse when scaled in shear layer similarity variables. \Rightarrow **structures are same as flow traverse downstream but different size**

The velocity reconstruction

- Azimuthally coherent vortex rings dominate the dynamics and the interactions of the structures until about $x/D \approx 4$.
- Beyond $x/D \approx 4$, the volcano-like eruptions die off rapidly.
- For $x/D \geq 4.0$, a “propeller-like” structure appears and dominates the pattern.
Bibliography

