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ABSTRACT

The equations governing the decay of temperature fluctuations in an
isotropic turbulent field are considered and found to admit to fully self-
preserving solutions. The characteristic length scale for the decay is shown
to be the scalar Taylor microscale, and the characteristic temperature is the
square root of the scalar variance. The variance is shown to decay as a power
of time, and as a result that the scalar Taylor microscale grows as the square
root of the time. The decay exponent and the spectral shape are shown to be
determined by the initial conditions. The theory is shown to be consistent
with a number of experimental observations. In addition to the well-known
empirically established power law decay for the variance, the temperature
spectrum is shown to collapse throughout the decay when scaled by the
temperature variance and the scalar Taylor microscale. Finally,
mechanical/temperature time scale ratio and the invariants of the scalar decay

are discussed and a number of questions are raised which require further
research.



INTRODUCTION

The decay of temperature fluctuations in isotropic turbulence has been a
subject of considerable interest since the early 1950’s. Corrsin (195la) was
the first to write equations describing the dynamics of the spectrum and

correlation functions in isotropic flow. He also proposed that
C = J: rz Bpy (r)dr (1)

should be invariant during decay, and presented models for the spectral
transfer of passive scalar contaminants (Corrsin 1951b).

There have been numerous attempts over the years to establish the
characteristics of the decay of temperature fluctuations introduced into grid-
generated turbulence (Mills et al. 1958, Lanza and Schwarz 1966, Yeh and Van
Atta 1973, Lin and Lin 1973, Warhaft and Lumley 1978). FWarhaft and Lumley
(1978) showed that each attempt generated a decay rate and spectral shape
uniquely determined by its initial conditions. In addition they showed that

the mechanical/thermal time scale ratio defined by

r=1/19 = (a2/€)/(6%/¢€p) (2)

was unlikely to achieve the expected equilibrium value of unity, but were
unable to establish a physical reason as to why.

Recently George (1987a,b) has shown that the dynamics of isothermal
decaying isotropic turbulence achieve a self-preserving state, and that the
spectrum throughout decay can be scaled by a single length scale, the Taylor

microscale defined by

X2 = 15y u?/e (3)



A2 = 15y u?/e (3)

and a velocity scale defined from the kinetic energy by
u- (3" (4)

Moreover, the self-preserving state achieved is uniquely determined by the
initial conditions. Further consequences of the analysis were that the von
Karman/Howarth (1938) and Batchelor (1948) theories of self-preservation were
incorrect, and that the Kolmogorov (1941, 1963) similarity theory did not
apply to this flow.

It is the purpose of this paper to extend these self-preservation
arguments to the scalar field. The result will be shown to again be that the
spectrum (this time the scalar spectrum) scales by a single length scale, the
thermal Taylor microscale Xy, and the scalar intensity, 6§ = (F?)l/z. The
consequences of self-preservation on other turbulence properties of interest
will be explored. Finally, the results of the analysis will be shown to be

consistent with experiment.

THE SCALAR SPECTRAL EQUATION
The equation governing the evolution of a homogeneous, isotropic passive

temperature field, 6(x,t), in a homogeneous, isotropic turbulence is given by

(Monin and Yaglom 1975)

)

HE8=T0'2°‘k2E0 (5)
where a is the thermal diffusivity, Ep = Ep (k,t) is the three-dimensional
scalar spectral function (hereafter referred to as the scalar spectrum), and

Te = Tg (k,t) is the scalar spectral energy transfer function.



The scalar spectrum is defined as one-half the average over spherical
shells of radius k of the three-dimensional spectrum. Thus if the three-

dimensional spectrum %44 (k,t) is defined by

L]

$g9 (kot) = Ilf 8(x,t) 8(x+r,t)eik-Tdr, (6)

then

£y (1) - 5 || 25 (k1) G0l 7)

where the integral is over spherical shells of radius k given by

k = |k]|.

It follows from the inverse transform of equation (6) that one half of the

scalar variance is the integral of the scalar spectrum over all wavenumbers,

i.e.

1 5% I
62 = 5 2 = Ep, (k,t)dk 8
o 9 ( ) (8)
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N

It can also be shown (Monin and Yaglom 1975) that the scalar dissipation rate,

€95 is given by
= .._d l 2 = ° k2 k dk
€ =- 4t |2 6 ] = 2 Eg (k,t) (9)

The spectral energy transfer Ty(k,t) can be related to the non-1inear
convection terms in the scalar equation, and can be shown to represent the
transfer of scalar variance to the wavenumber k from all other wavenumbers.

Since the net transfer over all wavenumbers must be zero, it follows that
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THE SELF-PRESERVATION ANALYSIS
We seek self-preserving solutions for which all of the terms in the
scalar spectral equations remain in relative balance throughout the decay.

We define scaling functions Ep (t), Tps(t) and Ly(t) so that

ng = klLp(t) (10)
Eg(k,t) = Egg(t)fa(ng) (11)

and
To(k,t) = Tps(t) gp (ng) (12)

These can be substituted directly into the scalar spectral equation to yield

[Eqe] s + [Eaiiﬂ}"ofe = [Tsplag - [EE§S]2n5fe (13)

For self-preservation, all of the bracketed terms must have the same
time-dependence. For convenience, the entire expression can be divided by the

Tast bracketed term to yield

Now since the last bracketed term is time-independent, all the others must also
be time-independent for self-preservation. Therefore, the conditions for self-

preservation are

2

(i) E%AL— = constant (15)
sf

(i1) %ﬂLﬂ = constant (16)



(ii1) Tigld = constant (17)
aEse

Equation (16) can be integrated directly to yield

Lf « o (t-t,) (18a)

or

L5 = 2A @ (t-t,) (18b)

where the origin in time, t=o0, 1is suitably chosen to absorb the initial

condition in the mechanical energy equation (see below), A is a coefficient

determined by the initial conditions, and the factor of 2 is introduced for
convenience. Thus the length scale increases with the square root of time
measured from the origin of the scalar field, t=t,.

Equation (15) can be integrated to yield
q
t-t
= | —
E59 [tl'to] ES0’1"’_to=t1't'o (19)

where t; is an arbitrary reference time and q is an exponent determined by the
initial conditions. Thus the scalar spectrum undergoes a power law decay.

The spectral decay constant can be related to the decay of the scalar
variance by substituting the self-preserving forms into the integral of

equation (8) to yield

1 -

7 02 = [Egoly™?] J: fg (ng)dng (20)
Thus,

Eqg ~ 6%l (21)

It follows immediately from equations (18), (19), and (21) that



82 o« (t-t,)m (22)

where

m=q-3% (23)

Thus the scalar variance also undergoes a power law decay with an exponent
which is determined by the initial conditions.

The length scale L, can be related to a physically meaningful length
scale by using the dissipation integral relation. By substituting the self-

preserving forms into equation (9) it follows that

o]
€g = [oE gLy 0] 2 j nh Fo(ng)dng (24)
0
or using equation (21),
€g « o 62/L} (25)
The scalar Taylor microscale, Xy, is defined from (Monin and Yaglom 1975)
anz_ 262
(6 X (26

For an isotropic scalar field the dissipation can be shown to be

3672 K
€ = 3a [ax] = 6o ¥ (27)

Comparison of equations (25) and (27) makes it immediately clear that

Ly < X (28)
so that the scalar Taylor microscale is proportional to the self-preservation
length scale. Therefore without loss of generality we choose the constant of

proportionality to be unity (and absorb a factor into fy4), i.e.

Ly = Xg (29)



The constant of proportionality in equation (18b) can be shown to be
uniquely related to the scalar variance decay exponent m. From equation (9)

and (27),

o
™| =

92
C e, = — 6y I (30)
] X3

[o%
purs

By substituting from equations (22) and (18b) for 62 and Xy it follows that

A = - 124 (t-t,) (31)
or
A= - 6/m. (32)

The scalar spectral transfer scaling function Tpo can be evaluated using

equations (17), (21) and (29) as

g2
Tsg = o 3 (33a)

or )2
Tqg =By a X; (33b)
where By is the constant of proportionality.

Note that there 1is nothing in the self-preservation analysis which
determines the value of the constants. Therefore these will be uniquely
determined by the initial conditions. There will be a coupling, however,
between the energy decay exponent m, the spectral transfer coefficient By, and
the shape of the energy spectrum since these are linked by the spectral energy
equation. This coupling can be easily seen by substituting the self-
preservation conditions (21), (31), and (33b) into equation (14) with the

result that the scalar spectral equation becomes

m[12f, — 2n§fg + Bygp] + 6ngfy + 6f5 = 0



In summary, self-preserving solutions to the scalar spectral equation
have been found which have the following properties:
(i) The Tength scale is the Taylor microscale, Xy
(i1) The scalar variance undergoes a power law decay.
(i1i) The Taylor microscale grows as the square root of time (measured
from its own virtual origin).
(iv) The scalar spectrum and scalar spectral transfer function collapse
at all wavenumbers when plotted as
Eglk,t) vs. kXg

ezxe
and

MTplot) oy
af?
THE MECHANICAL ENERGY SPECTRUM
The equation governing the mechanical energy spectrum for isotropic

turbulence is given by (Batchelor 1953)

9k 1 _ ke E (34)

—+

where v is the kinematic viscosity, E(k,t) is the energy spectrum and T(k,t)
is the spectral energy transfer. Note that the spectrum integrates to the

kinetic energy, i.e.

2w - Im E(k,t)dk (35)
0
and that the dissipation rate of mechanical energy is given by
e- 39 o [ ke E(kot)dk (36)
2 dt o ’

George (1987a,b) has shown that these equations admit to self-preserving

solutions which have the following properties:



(i) The length scale is the Taylor microscale, A, defined by equation

(i1)  The kinetic energy undergoes a power law decay,

uz o« tn, (37)
(iii) The Taylor microscale grows as the square root of time,

A2 = — %Q vt (38)

(iv)  The spectrum and spectral transfer collapse when scaled as

EL%§§1 vs. k)
and
ATutzt vs. ki

Note that the origin in time is chosen to satisfy equation (38). Thus
the offset of the scalar analysis will be zero only if both scalar and
velocity fields have the same virtual origin. As demonstrated for the scalar
spectrum above, the velocity spectral shape and decay rate will be determined

by the initial conditions.

THE TiME ScALE AND TAYLOR MICROSCALE RATIOS

It follows from equations (9), (22), (36), and (37) that
r = m/n (39)

Since n and m are uniquely determined by the initial conditions, so must be the

time scale ratio, and no universal value should be expected.

A fact of immediate interest is that both the mechanical and scalar Taylor
microscales grow as the square root of time, although with different virtual

origins. Thus asymptotically,

Ag/X} = constant, (40)



the exact value being determined by the initial conditions. The constant in
equation (40) can be shown to be given uniquely by the time scale ratio r

defined by equation (2). From equations (2), (26) and (3) it follows that
r =m/n = 3(X2/15v)/()p/6a)

2B

so that
A {2 5 (m 5
[Aa] "6 [E] 7% " (42)

where ¢ is the Prandtl number.

THE SPECTRAL TRANSFER AND TRIPLE CORRELATIONS

As pointed out by George (1987b), a consequence of the spectral transfer

scaling (or an equivalent analysis of the von Karman-Howarth equation) is that

the triple correlation u?(x) u(x+r) is given by

uz(x) u(x+r) = Ry™1 udk(r/x) (43)

where k(r\) is not the usual non-dimensional triple-correlation introduced by
von Karman and Howarth because of the RA'l in front of it. Thus the velocity

skewness (and the derivative skewness as well) is inversely proportional to Ry,

i.e.

(5‘2‘) 3/2 = 3_3 ~ RXI (44)

=

A similar relation can be derived from equation (33b) for the velocity-

scalar triple correlation (or equivalently, the scalar spectral transfer).

Chaaidtn~ +#hin



u(x) 8(x) 6(x+r)

9}; 82 p(r/xp)

9 1) ) oo

Thus the scalar-velocity triple correlation will depend inversely on the
Reynolds number and the scalar to mechanical length scale ratio.
The scalar-velocity triple correlation can be expressed in terms of the

time scale ratio r using equation (41) as

upz/[u? 87 = (5r/0)1/2 g5l (46)

Because u~t/2 and A-t1/2, RA~t("+1)/2; and it follows that

uez  —(n+l1)/2

E (47)

Since n < -1 in all experiments to-date, the normalized triple correlation
coefficient increases during decay, just as does that for the velocity alone

(George 1987b).

THE ScALAR INVARIANT

It is easy to show that the Corrsin integral can not be invariant during

decay unless m = =3/2. Showing this

0

C = [62)3] J ng? by (ng)dng (48)
0
where

by = Bpg/62 (49)



From equations (22) and (31) it follows that

c ~ tM+3/2 (50)
which can be constant only if m = -3/2.
Even though the Corrsin integral cannot be constant (except for the
particular case m=3/2), the fact of self-preservation implies that there is

another integral invariant. This can be seen by examining the integral

00

C, = I rk Bgg(r)dr
0
= [0z ak+] J nf bg(ng)dng (51)
0

For §2 ~ (t-t,)m, C, is a constant for

k = —(2m+1) (52)

Since m depends on the initial conditions, so must k. Thus the rate of decay
and the nature of the tails of the correlation are closely related to the
manner in which the flow is established.

George (1987b) was able to identify two separate self-preserving regions
for the mechanical energy decay, an initial region where the Loitsianskii
integral (the counterpart of the Corrsin integral) was not constant, and a
second region (previously and erroneously identified with the final period of
decay) in which the Loitsianskii integral was constant. This second region
was similar to the earlier final period of decay in that the energy decayed
as t_5/2, but differed in that the non-linear terms were of ever-increasing
importance (as manifested for example by the increasing velocity derivative
skewness).

It is interesting to speculate (since there appears to be no experimental

evidence to this point) as to whether the temperature fluctuations undergo



this same transition from one self-preserving state to another. If so a
region in which % ~ t-3/2 should be observed, regardless of the initial decay
rate. As for the velocity, the non-linear terms (as measured by the scalar-

velocity triple correlation) should be of increasing importance.

COMPARISON WITH EXPERIMENTAL DATA

The preceeding analysis has predicted with no assumption other than
complete self-preservation, that the kinetic energy and mean square thermal
variance should decay as some power of the time measured from appropriate
virtual origins. Such power law decays have been long established

experimentally in the absence of a supporting theory. For example, Figure (1)

is reproduced from Wahrhaft and Lumley (1978), and illustrates both the power
law decay of the thermal variance and the dependence on the initial conditions
of the thermal fluctuations.

A second prediction of the theory is that the mechanical and thermal
Taylor microscales should vary as the square root of time (or distance in a
wind tunnel) when measured from their respective virtual origins. Since the
Taylor microscale, however, is computed from the decay data (eg. using
equation 30), and since a power law form for the thermal variance (or kinetic
energy) implies directly a square root dependence, the Taylor microscale must
behave in the appropriate manner and can therefore not provide independent
confirmation. The same is true of relations like equations (40)-(42) relating
the time scale ratio to the mechanical and thermal Taylor microscales, since
these are satisfied identically once the power Taw behavior is established for
the variances.

The theory predicts that the turbulence can be characterized by a single

length scale, the Taylor microscale. Thus, all integral scales must be



proportional to it. While this would seem to provide a straightforward test
of the theory, unfortunately the integral scale is one of the most difficult
parameters to determine experimentally because of the large scales (or Tow
wavenumbers) which determine it. A better experimental test of the proposed
scaling laws (than the measured integral scales) is whether the velocity and
temperature spectra for a single initial condition can be collapsed throughout
the decay. Figures (2) - (5) show the one-dimensional spectral data for the
heated grid experiment of Wahrhaft and Lumley (1978, Figures 4 and 10).
Figures (2) and (4) are replots of their data as presented while Figures (3)
and (5) show the same data normalized as F},/u?X versus k\ and F}, versus ki
which are the one-dimensional spectral counterparts of the proposed scaling
lTaws. The collapse of the velocity spectral data is over the entire range of
scales, including even the largest wavenumbers. This last fact is
particularly satisfying in view of the problems cited above since the value of
the spectra at the origin can be related directly to the integral scales. The
collapse of the temperature spectra is 1less spectacular but is generally
supportive of the theory.

An additional feature of the proposed theory is that each method of
generating turbulence will generate its own characteristic spectral and decay
characteristics which will persist throughout the decay. The entire paper by
Wahrhaft and Lumley (1978) is a documentation of this fact and thus this
feature must be regarded as confirmed.

Finally, the theory predicts that both the mechanical and thermal
spectral transfers should scale inversely with the Reynolds number u)\/v.
While the downstream development of these does not appear to have been
studied, Mills et al. (1958) present measurements of the equivalent triple

moments defined by equations (43) and (45), both of which should also show the



inverse Reynolds number dependence. These correlations collapse well up to
the peak value when plotted as -p(r) Ry and -k(r)Ry versus r/X, but the
collapse deteriorates considerably for larger separations, reflecting the same
problem as for the double correlations in this experiment. The peak values,
however, are in approximate agreement with the proposed scaling as shown in

Table 1 which also includes the velocity-derivative skewness.
TABLE I

Experimental Verification of Predicted Scaling for the Triple
Correlations and Velocity Derivative Skewness (from Mills et al. 1958)

x/m 17 32 45 69
—Rey, Kpax 1.48 1.63 - 1.41
—oRey Ppax 0.95 1.09 - 1.07
—Rey, S;, 10.6 11.0 10.3 9.6

SuMMARY AND CONCLUSIONS

There 1is enough evidence to indicate that the predicted self-preserving
behavior of the decay of temperature fluctuations behind a grid is reasonable.
The theory predicts the oft-observed power law dependence of the decay of the
temperature variation, the collapse of the spectra, and the observed
dependence on the initial conditions. The evidence for the Reynolds number
dependence of the non-linear spectral transfer terms is more speculative, and
further experimental work would be helpful.

It is interesting that the theory presented here makes no assumptions

regarding the relation of the scalar spectral transfer to the mechanical



nature of the turbulence. Thus the existing arguments as to the nature of
this dependence would appear to be unchanged, as well as the predictions from
them (like the k-1 range, v. Monin and Yaglom, Vol. II). On the other hand,
it is easy to see that the existence of full self-preservation at all scales
of motion negates the possibility of a universal equilibrium range, and with
it the validity of the Kolmogorov theory for the university of the small
scales. This has been discussed in detail by George (1987a,b) for the
mechanical energy spectrum, and the arguments can easily be extended to the
scalar spectrum.

A related question has to do with whether or not the self-preservation
arguments presented here are applicable in the limit of infinite Reynolds
number. (Note that data in the atmospheric and oceans are not relevant to
this question since the equations for these flows do not admit to fully self-
preserving solutions as does the simple flow considered here and the flows are
free to develop in a locally self-preserving manner.) The full self-
preservation presented here requires that the spectral transfer forever depend
on Reynolds number. In effect, the spectral transfer adjusts itself so as to
provide the required amount of energy dissipation (¢ ~ vu2/£2). This is the
opposite of the conventional wisdom which requires that the decay rate be
determined only by the energy-containing eddies (¢ ~ u3/8). If the kind of
self-preservation proposed herein is, in fact, valid to infinite Reynolds
number (even if only in this flow), one of the cornerstones of turbulence
theory for the past forty years will have been removed.

There is also 1ittle evidence for whether or not the scalar field
undergoes a transition from one self-preserving state to another as does the
velocity field. George (1987) has shown that this transition in the velocity

field is characterized by the emergence of a t=5/2 decay law corresponding to



the constancy of the the Loitsianskii integral, yet with the ever increasing
importance of the non-linear terms. The scalar counterpart of this second
self-preserving regime would be the constancy of the Corrsin integral which
would together with self-preservation require a t3/2 decay of the temperature
variance. Since the experimental data sometimes show a scalar decay faster
than this, it is not at all clear as to what might happen when the transition
occurs in the velocity field.

In summary, there is sufficient evidence that the proposed full self-
preservation describes many of the observed features of the behavior of
isotropic temperature fluctuations. The analysis has raised, however, a
number of questions which require additional experimental or numerical

simulation research.
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